BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 23734688)

  • 1. Contributions of co-chaperones and post-translational modifications towards Hsp90 drug sensitivity.
    Walton-Diaz A; Khan S; Bourboulia D; Trepel JB; Neckers L; Mollapour M
    Future Med Chem; 2013 Jun; 5(9):1059-71. PubMed ID: 23734688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle.
    Li J; Richter K; Reinstein J; Buchner J
    Nat Struct Mol Biol; 2013 Mar; 20(3):326-31. PubMed ID: 23396352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translational modifications of Hsp90 and their contributions to chaperone regulation.
    Mollapour M; Neckers L
    Biochim Biophys Acta; 2012 Mar; 1823(3):648-55. PubMed ID: 21856339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A primate specific extra domain in the molecular chaperone Hsp90.
    Tripathi V; Obermann WM
    PLoS One; 2013; 8(8):e71856. PubMed ID: 23951259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-translational modifications of Hsp90 and translating the chaperone code.
    Backe SJ; Sager RA; Woodford MR; Makedon AM; Mollapour M
    J Biol Chem; 2020 Aug; 295(32):11099-11117. PubMed ID: 32527727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting Posttranslational Modifications of Hsp90.
    Sager RA; Woodford MR; Neckers L; Mollapour M
    Methods Mol Biol; 2018; 1709():209-219. PubMed ID: 29177662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p23 and Aha1.
    Rehn AB; Buchner J
    Subcell Biochem; 2015; 78():113-31. PubMed ID: 25487019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of p23, Hop, immunophilins, and other co-chaperones in regulating Hsp90 function.
    Cox MB; Johnson JL
    Methods Mol Biol; 2011; 787():45-66. PubMed ID: 21898226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Posttranslational Modifications of Hsp90 Isoforms.
    Sager RA; Backe SJ; Neckers L; Woodford MR; Mollapour M
    Methods Mol Biol; 2023; 2693():125-139. PubMed ID: 37540432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulatory mechanism of a client kinase controlling its own release from Hsp90 chaperone machinery through phosphorylation.
    Lu XA; Wang X; Zhuo W; Jia L; Jiang Y; Fu Y; Luo Y
    Biochem J; 2014 Jan; 457(1):171-83. PubMed ID: 24117238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.
    Li J; Soroka J; Buchner J
    Biochim Biophys Acta; 2012 Mar; 1823(3):624-35. PubMed ID: 21951723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simvastatin functions as a heat shock protein 90 inhibitor against triple-negative breast cancer.
    Kou X; Jiang X; Liu H; Wang X; Sun F; Han J; Fan J; Feng G; Lin Z; Jiang L; Yang Y
    Cancer Sci; 2018 Oct; 109(10):3272-3284. PubMed ID: 30039622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of the human Hsp90-p50Cdc37 chaperone complex against nucleotides and Hsp90 inhibitors, and the influence of phosphorylation by casein kinase 2.
    Olesen SH; Ingles DJ; Zhu JY; Martin MP; Betzi S; Georg GI; Tash JS; Schönbrunn E
    Molecules; 2015 Jan; 20(1):1643-60. PubMed ID: 25608045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, function and regulation of the hsp90 machinery.
    Li J; Buchner J
    Biomed J; 2013; 36(3):106-17. PubMed ID: 23806880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 'active life' of Hsp90 complexes.
    Prodromou C
    Biochim Biophys Acta; 2012 Mar; 1823(3):614-23. PubMed ID: 21840346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.
    Carrello A; Allan RK; Morgan SL; Owen BA; Mok D; Ward BK; Minchin RF; Toft DO; Ratajczak T
    Cell Stress Chaperones; 2004; 9(2):167-81. PubMed ID: 15497503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR; Workman P
    Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study.
    Verma S; Singh A; Mishra A
    J Mol Graph Model; 2012 Jul; 37():27-38. PubMed ID: 22609743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational dynamics of the molecular chaperone Hsp90 in complexes with a co-chaperone and anticancer drugs.
    Phillips JJ; Yao ZP; Zhang W; McLaughlin S; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2007 Oct; 372(5):1189-203. PubMed ID: 17764690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.
    Prodromou C; Siligardi G; O'Brien R; Woolfson DN; Regan L; Panaretou B; Ladbury JE; Piper PW; Pearl LH
    EMBO J; 1999 Feb; 18(3):754-62. PubMed ID: 9927435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.