These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23734750)

  • 1. Modelling the glycocalyx-endothelium-erythrocyte interaction in the microcirculation: a computational study.
    Pontrelli G; Halliday I; Spencer TJ; König CS; Collins MW
    Comput Methods Biomech Biomed Engin; 2015; 18(4):351-61. PubMed ID: 23734750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Phys Biol; 2007 Nov; 4(4):285-95. PubMed ID: 18185006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fully analytical approach to investigate the electro-viscous effect of the endothelial glycocalyx layer on the microvascular blood flow.
    Khosravi A; Shirazi HA; Asnafi A; Karimi A
    Clin Chim Acta; 2017 Sep; 472():5-12. PubMed ID: 28694125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
    Zhang J; Johnson PC; Popel AS
    Microvasc Res; 2009 May; 77(3):265-72. PubMed ID: 19323969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in properties of the glycocalyx affects the shear rate and stress distribution on endothelial cells.
    Wang W
    J Biomech Eng; 2007 Jun; 129(3):324-9. PubMed ID: 17536899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling wall shear stress in small arteries using the Lattice Boltzmann method: influence of the endothelial wall profile.
    Pontrelli G; König CS; Halliday I; Spencer TJ; Collins MW; Long Q; Succi S
    Med Eng Phys; 2011 Sep; 33(7):832-9. PubMed ID: 21546305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature.
    McClatchey PM; Schafer M; Hunter KS; Reusch JE
    Am J Physiol Heart Circ Physiol; 2016 Jul; 311(1):H168-76. PubMed ID: 27199117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscale simulation of blood flow in small vessels.
    Bagchi P
    Biophys J; 2007 Mar; 92(6):1858-77. PubMed ID: 17208982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative shedding of glycosaminoglycans from the endothelial glycocalyx during inflammation and their contribution to stiffness of the glycocalyx.
    Lipowsky HH
    Biorheology; 2019; 56(2-3):191-205. PubMed ID: 31707364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium.
    Possenti L; di Gregorio S; Gerosa FM; Raimondi G; Casagrande G; Costantino ML; Zunino P
    Int J Numer Method Biomed Eng; 2019 Mar; 35(3):e3165. PubMed ID: 30358172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical behavior of the erythrocyte in microvessel stenosis.
    Zhang Z; Zhang X
    Sci China Life Sci; 2011 May; 54(5):450-8. PubMed ID: 21416230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of the microcirculation.
    Pries AR; Secomb TW
    Clin Hemorheol Microcirc; 2003; 29(3-4):143-8. PubMed ID: 14724335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood flow and cell-free layer in microvessels.
    Fedosov DA; Caswell B; Popel AS; Karniadakis GE
    Microcirculation; 2010 Nov; 17(8):615-28. PubMed ID: 21044216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cell-free layer in microvascular blood flow.
    Kim S; Ong PK; Yalcin O; Intaglietta M; Johnson PC
    Biorheology; 2009; 46(3):181-9. PubMed ID: 19581726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW; Hsu R; Pries AR
    Am J Physiol; 1998 Mar; 274(3):H1016-22. PubMed ID: 9530216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvasculature on a chip: study of the Endothelial Surface Layer and the flow structure of Red Blood Cells.
    Tsvirkun D; Grichine A; Duperray A; Misbah C; Bureau L
    Sci Rep; 2017 Mar; 7():45036. PubMed ID: 28338083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a classic paper by Robin Fahraeus and Torsten Lindqvist to teach basic hemorheology.
    Toksvang LN; Berg RM
    Adv Physiol Educ; 2013 Jun; 37(2):129-33. PubMed ID: 23728130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.