These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 23734813)

  • 1. Deciphering the metal-C60 interface in optoelectronic devices: evidence for C60 reduction by vapor deposited Al.
    Matz DL; Ratcliff EL; Meyer J; Kahn A; Pemberton JE
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6001-8. PubMed ID: 23734813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The electronic and chemical structure of the a-B3CO0.5:Hy-to-metal interface from photoemission spectroscopy: implications for Schottky barrier heights.
    Driver MS; Paquette MM; Karki S; Nordell BJ; Caruso AN
    J Phys Condens Matter; 2012 Nov; 24(44):445001. PubMed ID: 22976833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Electronic and Structural Coupling of C
    Picone A; Giannotti D; Riva M; Calloni A; Bussetti G; Berti G; Duò L; Ciccacci F; Finazzi M; Brambilla A
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):26418-26424. PubMed ID: 27603203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interface state assisted charge transport at the MoO(3)/metal interface.
    Yi Y; Jeon PE; Lee H; Han K; Kim HS; Jeong K; Cho SW
    J Chem Phys; 2009 Mar; 130(9):094704. PubMed ID: 19275415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of Ground- and Excited-State Charge Transfer at the C60/Graphene Interface.
    Jnawali G; Rao Y; Beck JH; Petrone N; Kymissis I; Hone J; Heinz TF
    ACS Nano; 2015 Jul; 9(7):7175-85. PubMed ID: 26072947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallization of the C60/Rh(100) interface revealed by valence photoelectron spectroscopy and density functional theory calculations.
    Wade AC; Lizzit S; Petaccia L; Goldoni A; Diop D; Ustünel H; Fabris S; Baroni S
    J Chem Phys; 2010 Jun; 132(23):234710. PubMed ID: 20572737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for doping induced p type C60 using thermally evaporated molybdenum trioxide (MoO3) as a dopant.
    Yang JP; Wang WQ; Cheng LW; Li YQ; Tang JX; Kera S; Ueno N; Zeng XH
    J Phys Condens Matter; 2016 May; 28(18):185502. PubMed ID: 27058225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical nanostructuring of fullerene films--spectroscopic evidence for C60 polymer formation and hydrogenation.
    Krause M; Deutsch D; Janda P; Kavan L; Dunsch L
    Phys Chem Chem Phys; 2005 Sep; 7(17):3179-84. PubMed ID: 16240029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Raman spectroscopy of chemistry at the tris(8-hydroxyquinoline) aluminum/Ca interface.
    Davis RJ; Pemberton JE
    J Phys Chem A; 2009 Apr; 113(16):4397-402. PubMed ID: 19371117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doping of C60 fullerene peapods with lithium vapor: Raman spectroscopic and spectroelectrochemical studies.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2008; 14(20):6231-6. PubMed ID: 18512827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray photoelectron spectrometry depth profiling of organic thin films using C60 sputtering.
    Chen YY; Yu BY; Wang WB; Hsu MF; Lin WC; Lin YC; Jou JH; Shyue JJ
    Anal Chem; 2008 Jan; 80(2):501-5. PubMed ID: 18081326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.
    Zou Y; Mao H; Meng Q; Zhu D
    J Chem Phys; 2016 Feb; 144(8):084706. PubMed ID: 26931717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of C
    Albani G; Capra M; Lodesani A; Calloni A; Bussetti G; Finazzi M; Ciccacci F; Brambilla A; Duò L; Picone A
    Beilstein J Nanotechnol; 2022; 13():857-864. PubMed ID: 36105692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-terminating protocol for an interfacial complexation reaction in vacuo by metal-organic chemical vapor deposition.
    Papageorgiou AC; Fischer S; Oh SC; Sağlam O; Reichert J; Wiengarten A; Seufert K; Vijayaraghavan S; Ecija D; Auwärter W; Allegretti F; Acres RG; Prince KC; Diller K; Klappenberger F; Barth JV
    ACS Nano; 2013 May; 7(5):4520-6. PubMed ID: 23641683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Raman spectroscopy of the interface of tris-(8-hydroxyquinoline) aluminum with Mg.
    Davis RJ; Pemberton JE
    J Am Chem Soc; 2009 Jul; 131(29):10009-14. PubMed ID: 19583253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Control of Morphology in Fullerene-Based Electron-Conducting Buffers via Organic Vapor Phase Deposition.
    Song B; Forrest SR
    Nano Lett; 2016 Jun; 16(6):3905-10. PubMed ID: 27144912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Interface Dipole of Copper Phthalocyanine (CuPc)/C60: Theory and Experiment.
    Sai N; Gearba R; Dolocan A; Tritsch JR; Chan WL; Chelikowsky JR; Leung K; Zhu X
    J Phys Chem Lett; 2012 Aug; 3(16):2173-7. PubMed ID: 26295767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic and theoretical studies on the structural, electronic, and optical properties of zinc octaethylporphyrin/C
    Onoe J; Watanabe S; Kato S; Nakaya M; Bucher JP
    J Chem Phys; 2017 Dec; 147(21):214701. PubMed ID: 29221392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Surface Ligands on Energetics at FASnI
    Boehm AM; Liu T; Park SM; Abtahi A; Graham KR
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5209-5218. PubMed ID: 31887000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion of Ag into organic semiconducting materials: a combined analytical study using transmission electron microscopy and X-ray reflectivity.
    Fladischer S; Neuhold A; Kraker E; Haber T; Lamprecht B; Salzmann I; Resel R; Grogger W
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5608-12. PubMed ID: 23027799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.