BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23734882)

  • 1. Proteomic analyses of different human tumour-derived chaperone-rich cell lysate (CRCL) anti-cancer vaccines reveal antigen content and strong similarities amongst the vaccines along with a basis for CRCL's unique structure: CRCL vaccine proteome leads to unique structure.
    Mayer-Sonnenfeld T; Har-Noy M; Lillehei KO; Graner MW
    Int J Hyperthermia; 2013 Sep; 29(6):520-7. PubMed ID: 23734882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 'peptidome' of tumour-derived chaperone-rich cell lysate anti-cancer vaccines reveals potential tumour antigens that stimulate tumour immunity.
    Graner MW; Romanoski A; Katsanis E
    Int J Hyperthermia; 2013 Aug; 29(5):380-9. PubMed ID: 23725202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential capacity of chaperone-rich lysates in cross-presenting human endogenous and exogenous melanoma differentiation antigens.
    Bleifuss E; Bendz H; Sirch B; Thompson S; Brandl A; Milani V; Graner MW; Drexler I; Kuppner M; Katsanis E; Noessner E; Issels RD
    Int J Hyperthermia; 2008 Dec; 24(8):623-37. PubMed ID: 18608582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperone-rich cell lysates, immune activation and tumor vaccination.
    Zeng Y; Graner MW; Katsanis E
    Cancer Immunol Immunother; 2006 Mar; 55(3):329-38. PubMed ID: 15887013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperone-rich cell lysate embedded with BCR-ABL peptide demonstrates enhanced anti-tumor activity against a murine BCR-ABL positive leukemia.
    Kislin KL; Marron MT; Li G; Graner MW; Katsanis E
    FASEB J; 2007 Jul; 21(9):2173-84. PubMed ID: 17327358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-derived chaperone-rich cell lysates are effective therapeutic vaccines against a variety of cancers.
    Graner MW; Zeng Y; Feng H; Katsanis E
    Cancer Immunol Immunother; 2003 Apr; 52(4):226-34. PubMed ID: 12669247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines.
    Graner MW; Lillehei KO; Katsanis E
    Front Oncol; 2014; 4():379. PubMed ID: 25610811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged remission of advanced bronchoalveolar adenocarcinoma in a dog treated with autologous, tumour-derived chaperone-rich cell lysate (CRCL) vaccine.
    Epple LM; Bemis LT; Cavanaugh RP; Skope A; Mayer-Sonnenfeld T; Frank C; Olver CS; Lencioni AM; Dusto NL; Tal A; Har-Noy M; Lillehei KO; Katsanis E; Graner MW
    Int J Hyperthermia; 2013 Aug; 29(5):390-8. PubMed ID: 23786302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular and extracellular Hsp70 chaperone as a target for cancer therapy.
    Guzhova IV; Shevtsov MA; Abkin SV; Pankratova KM; Margulis BA
    Int J Hyperthermia; 2013 Aug; 29(5):399-408. PubMed ID: 23845032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peritransplantation vaccination with chaperone-rich cell lysate induces antileukemia immunity.
    Chen X; Zeng Y; Li G; Larmonier N; Graner MW; Katsanis E
    Biol Blood Marrow Transplant; 2006 Mar; 12(3):275-83. PubMed ID: 16503496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values.
    Luk JM; Lam CT; Siu AF; Lam BY; Ng IO; Hu MY; Che CM; Fan ST
    Proteomics; 2006 Feb; 6(3):1049-57. PubMed ID: 16400691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chaperone protein-enriched tumor cell lysate vaccine generates protective humoral immunity in a mouse breast cancer model.
    Li G; Andreansky S; Helguera G; Sepassi M; Janikashvili N; Cantrell J; Lacasse CL; Larmonier N; Penichet ML; Katsanis E
    Mol Cancer Ther; 2008 Mar; 7(3):721-9. PubMed ID: 18347157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunotherapy of autologous tumor lysate-loaded dendritic cell vaccines by a closed-flow electroporation system for solid tumors.
    Kamigaki T; Kaneko T; Naitoh K; Takahara M; Kondo T; Ibe H; Matsuda E; Maekawa R; Goto S
    Anticancer Res; 2013 Jul; 33(7):2971-6. PubMed ID: 23780988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of polyvalent allogeneic vaccines.
    Van Epps D
    Dev Biol (Basel); 2004; 116():79-90; discussion 133-43. PubMed ID: 15603185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer vaccination.
    Del Vecchio M; Parmiani G
    Forum (Genova); 1999; 9(3):239-56. PubMed ID: 10504171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics.
    Sørensen BS; Horsman MR; Vorum H; Honoré B; Overgaard J; Alsner J
    Radiother Oncol; 2009 Sep; 92(3):443-9. PubMed ID: 19541378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic profiling of human retinal and choroidal endothelial cells reveals molecular heterogeneity related to tissue of origin.
    Zamora DO; Riviere M; Choi D; Pan Y; Planck SR; Rosenbaum JT; David LL; Smith JR
    Mol Vis; 2007 Oct; 13():2058-65. PubMed ID: 18079679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically modified tumour vaccines--where we are today.
    Nawrocki S; Mackiewicz A
    Cancer Treat Rev; 1999 Feb; 25(1):29-46. PubMed ID: 10212588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic cancer vaccines: using unique antigens.
    Lewis JJ
    Proc Natl Acad Sci U S A; 2004 Oct; 101 Suppl 2(Suppl 2):14653-6. PubMed ID: 15297620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High throughput proteomic strategies for identifying tumour-associated antigens.
    Gunawardana CG; Diamandis EP
    Cancer Lett; 2007 Apr; 249(1):110-9. PubMed ID: 17306453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.