These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 23735115)

  • 1. Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst.
    DiMeglio JL; Rosenthal J
    J Am Chem Soc; 2013 Jun; 135(24):8798-801. PubMed ID: 23735115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials.
    Medina-Ramos J; DiMeglio JL; Rosenthal J
    J Am Chem Soc; 2014 Jun; 136(23):8361-7. PubMed ID: 24783975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Electrochemical Reduction of CO
    Díaz-Sainz G; Alvarez-Guerra M; Irabien A
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32998373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Reduction of CO
    Ávila-Bolívar B; García-Cruz L; Montiel V; Solla-Gullón J
    Molecules; 2019 May; 24(11):. PubMed ID: 31141906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of cobalt-mediated electrocatalytic CO2 reduction using a redox-active ligand.
    Lacy DC; McCrory CC; Peters JC
    Inorg Chem; 2014 May; 53(10):4980-8. PubMed ID: 24773584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-electron carbon dioxide reduction catalyzed by rhenium(I) bis(imino)acenaphthene carbonyl complexes.
    Portenkirchner E; Kianfar E; Sariciftci NS; Knör G
    ChemSusChem; 2014 May; 7(5):1347-51. PubMed ID: 24737649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO
    Han N; Wang Y; Yang H; Deng J; Wu J; Li Y; Li Y
    Nat Commun; 2018 Apr; 9(1):1320. PubMed ID: 29615621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-Enriched Room-Temperature Liquid Bismuth for Catalytic CO
    Guo J; Zhi X; Wang D; Qu L; Zavabeti A; Fan Q; Zhang Y; Butson JD; Yang J; Wu C; Liu JZ; Hu G; Fan X; Li GK
    Small; 2024 Sep; 20(37):e2401777. PubMed ID: 38747025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive Carbon Capture Enables CO
    Pimlott DJD; Kim Y; Berlinguette CP
    Acc Chem Res; 2024 Apr; 57(7):1007-1018. PubMed ID: 38526508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal-Driven Dispersion of Bismuth Nanoparticles among Carbon Matrix for Efficient Carbon Dioxide Reduction.
    Guo W; Cao X; Tan D; Wulan B; Ma J; Zhang J
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202401333. PubMed ID: 38670936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [(11)C]CO2 to [(11)C]CO conversion mediated by [(11)C]silanes: a novel route for [(11)C]carbonylation reactions.
    Taddei C; Bongarzone S; Haji Dheere AK; Gee AD
    Chem Commun (Camb); 2015 Jul; 51(59):11795-11797. PubMed ID: 26107103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Very highly efficient reduction of CO
    Sun X; Kang X; Zhu Q; Ma J; Yang G; Liu Z; Han B
    Chem Sci; 2016 Apr; 7(4):2883-2887. PubMed ID: 30090281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Housing of electrosynthetic biofilms using a roll-up carbon veil electrode increases CO
    Li S; Kim M; Song YE; Hwan Son S; Kim HI; Jae J; Yan Q; Fei Q; Kim JR
    Bioresour Technol; 2024 Feb; 393():130157. PubMed ID: 38065517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Carbon Dioxide Electroreduction via DNA-Directed Catalyst Immobilization.
    Fan G; Corbin N; Chung M; Gill TM; Moore EB; Karbelkar AA; Furst AL
    JACS Au; 2024 Apr; 4(4):1413-1421. PubMed ID: 38665653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrowetting limits electrochemical CO
    Baumgartner LM; Goryachev A; Koopman CI; Franzen D; Ellendorff B; Turek T; Vermaas DA
    Energy Adv; 2023 Nov; 2(11):1893-1904. PubMed ID: 38013932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cathodic Conversion of Pressurized CO
    Proietto F; Cammisa G; Contino M; Inguanta R; Galia A; Scialdone O
    ChemSusChem; 2024 May; ():e202400440. PubMed ID: 38713146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Facets and Morphologies of Different Bismuth-Based Materials for CO
    Talukdar S; Montini T
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of density-based separation of Ce and Hf intermetallics in liquid Bi.
    Seo G; Shin HW; Park J
    Chemosphere; 2024 Sep; 363():142882. PubMed ID: 39025315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the role of proton concentration in dinuclear metal complexes for boosting photocatalytic CO
    Wang HF; Wang HJ; Zhong DC; Lu TB
    Proc Natl Acad Sci U S A; 2024 May; 121(20):e2318384121. PubMed ID: 38713627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comprehensive Review on Electrocatalytic Applications of 2D Metallenes.
    Basyooni-M Kabatas MA
    Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.