These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 23735186)

  • 1. A mixture model for expression deconvolution from RNA-seq in heterogeneous tissues.
    Li Y; Xie X
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S11. PubMed ID: 23735186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data.
    Gong T; Szustakowski JD
    Bioinformatics; 2013 Apr; 29(8):1083-5. PubMed ID: 23428642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TIGAR: transcript isoform abundance estimation method with gapped alignment of RNA-Seq data by variational Bayesian inference.
    Nariai N; Hirose O; Kojima K; Nagasaki M
    Bioinformatics; 2013 Sep; 29(18):2292-9. PubMed ID: 23821651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying differentially expressed transcripts from RNA-seq data with biological variation.
    Glaus P; Honkela A; Rattray M
    Bioinformatics; 2012 Jul; 28(13):1721-8. PubMed ID: 22563066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads.
    Li W; Jiang T
    Bioinformatics; 2012 Nov; 28(22):2914-21. PubMed ID: 23060617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data.
    Wang C; Lin Y; Li S; Guan J
    BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DAFS: a data-adaptive flag method for RNA-sequencing data to differentiate genes with low and high expression.
    George NI; Chang CW
    BMC Bioinformatics; 2014 Mar; 15():92. PubMed ID: 24685233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast and globally optimal solution for RNA-seq quantification.
    Yi H; Lin Y; Chang Q; Jin W
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37595963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-Skim: a rapid method for RNA-Seq quantification at transcript level.
    Zhang Z; Wang W
    Bioinformatics; 2014 Jun; 30(12):i283-i292. PubMed ID: 24931995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana.
    Zhang R; Calixto CP; Tzioutziou NA; James AB; Simpson CG; Guo W; Marquez Y; Kalyna M; Patro R; Eyras E; Barta A; Nimmo HG; Brown JW
    New Phytol; 2015 Oct; 208(1):96-101. PubMed ID: 26111100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive evaluation of RNA-seq quantification methods for linearity.
    Jin H; Wan YW; Liu Z
    BMC Bioinformatics; 2017 Mar; 18(Suppl 4):117. PubMed ID: 28361706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data.
    Kanitz A; Gypas F; Gruber AJ; Gruber AR; Martin G; Zavolan M
    Genome Biol; 2015 Jul; 16(1):150. PubMed ID: 26201343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and accurate approximate inference of transcript expression from RNA-seq data.
    Hensman J; Papastamoulis P; Glaus P; Honkela A; Rattray M
    Bioinformatics; 2015 Dec; 31(24):3881-9. PubMed ID: 26315907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.
    Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-Based Isoform Quantification with RNA-Seq Data for Cancer Transcriptome Analysis.
    Zhang W; Chang JW; Lin L; Minn K; Wu B; Chien J; Yong J; Zheng H; Kuang R
    PLoS Comput Biol; 2015 Dec; 11(12):e1004465. PubMed ID: 26699225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate estimation of expression levels of homologous genes in RNA-seq experiments.
    Paşaniuc B; Zaitlen N; Halperin E
    J Comput Biol; 2011 Mar; 18(3):459-68. PubMed ID: 21385047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powerful differential expression analysis incorporating network topology for next-generation sequencing data.
    Dona MSI; Prendergast LA; Mathivanan S; Keerthikumar S; Salim A
    Bioinformatics; 2017 May; 33(10):1505-1513. PubMed ID: 28172447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data.
    Mezlini AM; Smith EJ; Fiume M; Buske O; Savich GL; Shah S; Aparicio S; Chiang DY; Goldenberg A; Brudno M
    Genome Res; 2013 Mar; 23(3):519-29. PubMed ID: 23204306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.