These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23735243)

  • 1. Time-resolved principal component imaging analysis of chlorophyll fluorescence induction for monitoring leaf water stress.
    Kobori H; Tsuchikawa S
    Appl Spectrosc; 2013 Jun; 67(6):594-9. PubMed ID: 23735243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll fluorescence emission spectrum inside a leaf.
    Pedrós R; Moya I; Goulas Y; Jacquemoud S
    Photochem Photobiol Sci; 2008 Apr; 7(4):498-502. PubMed ID: 18385895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The ontogenetic approach to chlorophyll fluorescence studies of plant photosynthetic apparatus under stressful conditions].
    Nesterenko TV; Tikhomirov AA
    Biofizika; 2005; 50(2):335-40. PubMed ID: 15856994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves.
    Flor-Henry M; McCabe TC; de Bruxelles GL; Roberts MR
    BMC Plant Biol; 2004 Nov; 4():19. PubMed ID: 15550176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo monitoring of chlorophyll fluorescence response to low-dose gamma-irradiation in pumpkin (cucurbita pepo) leaves.
    Jovanić BR; Dramićanin MD
    Luminescence; 2003; 18(5):274-7. PubMed ID: 14587079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and non-invasive detection of plants senescence using a delayed fluorescence technique.
    Zhang L; Xing D; Wang J; Li L
    Photochem Photobiol Sci; 2007 Jun; 6(6):635-41. PubMed ID: 17549265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Chlorophyll fluorescence induction and estimation of plant resistance to stress factors].
    Nesterenko TV; Tikhomirov AA; Shikhov VN
    Zh Obshch Biol; 2007; 68(6):444-58. PubMed ID: 18257288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application of chlorophyll fluorescence analysis in forest tree cultivation].
    Wen G; Tian H; Zhang M; Jiang W
    Ying Yong Sheng Tai Xue Bao; 2006 Oct; 17(10):1973-7. PubMed ID: 17209403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of plant chlorophyll content using Google Glass.
    Cortazar B; Koydemir HC; Tseng D; Feng S; Ozcan A
    Lab Chip; 2015 Apr; 15(7):1708-16. PubMed ID: 25669673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monte Carlo study of the chlorophyll fluorescence emission and its effect on the leaf spectral reflectance and transmittance under various conditions.
    Susila P; Naus J
    Photochem Photobiol Sci; 2007 Aug; 6(8):894-902. PubMed ID: 17668120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophyll a fluorescence imaging of ozone-stressed Brassica napus L. plants differing in glucosinolate concentrations.
    Gielen B; Vandermeiren K; Horemans N; D'Haese D; Serneels R; Valcke R
    Plant Biol (Stuttg); 2006 Sep; 8(5):698-705. PubMed ID: 16821192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of leaf water content using near-infrared hyperspectral imaging.
    Higa S; Kobori H; Tsuchikawa S
    Appl Spectrosc; 2013 Nov; 67(11):1302-7. PubMed ID: 24160882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Laser-induced fluorescence spectroscopy characterization of farmland soil moisture content].
    Zhang SR; Dong DM; Zheng WG; Zhao XD; Wang JH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2623-7. PubMed ID: 23285852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum).
    Mathur S; Jajoo A; Mehta P; Bharti S
    Plant Biol (Stuttg); 2011 Jan; 13(1):1-6. PubMed ID: 21143718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance.
    Oxborough K
    J Exp Bot; 2004 May; 55(400):1195-205. PubMed ID: 15107453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage.
    Chaerle L; Hagenbeek D; De Bruyne E; Valcke R; Van Der Straeten D
    Plant Cell Physiol; 2004 Jul; 45(7):887-96. PubMed ID: 15295072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf.
    Hogewoning SW; Harbinson J
    J Exp Bot; 2007; 58(3):453-63. PubMed ID: 17132711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress.
    Kocheva K; Lambrev P; Georgiev G; Goltsev V; Karabaliev M
    Bioelectrochemistry; 2004 Jun; 63(1-2):121-4. PubMed ID: 15110261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Callose content in cell walls of leaf epidermis and mesophyll in Alisma plantago-aquatica L. plants growing in different conditions of water supply].
    Ovruts'ka II
    Tsitol Genet; 2014; 48(2):28-36. PubMed ID: 24818508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.