These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23735573)

  • 1. Site-specific fatty acid-conjugation to prolong protein half-life in vivo.
    Lim SI; Mizuta Y; Takasu A; Hahn YS; Kim YH; Kwon I
    J Control Release; 2013 Sep; 170(2):219-25. PubMed ID: 23735573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of therapeutic protein variants with the human serum albumin binding capacity via site-specific fatty acid conjugation.
    Cho J; Lim SI; Yang BS; Hahn YS; Kwon I
    Sci Rep; 2017 Dec; 7(1):18041. PubMed ID: 29269881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Specific Albumination as an Alternative to PEGylation for the Enhanced Serum Half-Life in Vivo.
    Yang B; Lim SI; Kim JC; Tae G; Kwon I
    Biomacromolecules; 2016 May; 17(5):1811-7. PubMed ID: 27050863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein-protein click conjugation.
    Bundy BC; Swartz JR
    Bioconjug Chem; 2010 Feb; 21(2):255-63. PubMed ID: 20099875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivalent Albumin-Neonatal Fc Receptor Interactions Mediate a Prominent Extension of the Serum Half-Life of a Therapeutic Protein.
    Yang B; Kwon I
    Mol Pharm; 2021 Jun; 18(6):2397-2405. PubMed ID: 33983743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.
    Vutti S; Schoffelen S; Bolinsson J; Buch-Månson N; Bovet N; Nygård J; Martinez KL; Meldal M
    Chemistry; 2016 Jan; 22(2):496-500. PubMed ID: 26601641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized Methods for the Production and Bioconjugation of Site-Specific, Alkyne-Modified Glucagon-like Peptide-1 (GLP-1) Analogs to Azide-Modified Delivery Platforms Using Copper-Catalyzed Alkyne-Azide Cycloaddition.
    Alavi SE; Cabot PJ; Yap GY; Moyle PM
    Bioconjug Chem; 2020 Jul; 31(7):1820-1834. PubMed ID: 32543833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring protein-polymer conjugation by a fluorogenic Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition.
    Dirks AT; Cornelissen JJ; Nolte RJ
    Bioconjug Chem; 2009 Jun; 20(6):1129-38. PubMed ID: 19453101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific albumination of a therapeutic protein with multi-subunit to prolong activity in vivo.
    Lim SI; Hahn YS; Kwon I
    J Control Release; 2015 Jun; 207():93-100. PubMed ID: 25862515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Azidoethoxyphenylalanine as a Vibrational Reporter and Click Chemistry Partner in Proteins.
    Tookmanian EM; Phillips-Piro CM; Fenlon EE; Brewer SH
    Chemistry; 2015 Dec; 21(52):19096-103. PubMed ID: 26608683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies of the serum half-life extension of a protein via site-specific conjugation to a species-matched or -mismatched albumin.
    Yang B; Kim JC; Seong J; Tae G; Kwon I
    Biomater Sci; 2018 Jul; 6(8):2092-2100. PubMed ID: 29881837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Site-Specific Multiconjugation Strategies in Recombinant Proteins Produced in Bacteria.
    Merten H; Schaefer JV; Brandl F; Zangemeister-Wittke U; Plückthun A
    Methods Mol Biol; 2019; 2033():253-273. PubMed ID: 31332759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct polymerization of proteins.
    Albayrak C; Swartz JR
    ACS Synth Biol; 2014 Jun; 3(6):353-62. PubMed ID: 24200191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific conjugation of 8-ethynyl-BODIPY to a protein by [2 + 3] cycloaddition.
    Albrecht M; Lippach A; Exner MP; Jerbi J; Springborg M; Budisa N; Wenz G
    Org Biomol Chem; 2015 Jun; 13(24):6728-36. PubMed ID: 25994282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon β-1b by site-specific PEGylation.
    Nairn NW; Shanebeck KD; Wang A; Graddis TJ; VanBrunt MP; Thornton KC; Grabstein K
    Bioconjug Chem; 2012 Oct; 23(10):2087-97. PubMed ID: 22988919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of copper(I) catalyzed azide-alkyne [3+2] cycloaddition to the synthesis of template-assembled multivalent peptide conjugates.
    Avrutina O; Empting M; Fabritz S; Daneschdar M; Frauendorf H; Diederichsen U; Kolmar H
    Org Biomol Chem; 2009 Oct; 7(20):4177-85. PubMed ID: 19795056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.
    Anderton GI; Bangerter AS; Davis TC; Feng Z; Furtak AJ; Larsen JO; Scroggin TL; Heemstra JM
    Bioconjug Chem; 2015 Aug; 26(8):1687-91. PubMed ID: 26056848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-chelating azides for efficient click conjugation reactions in complex media.
    Bevilacqua V; King M; Chaumontet M; Nothisen M; Gabillet S; Buisson D; Puente C; Wagner A; Taran F
    Angew Chem Int Ed Engl; 2014 Jun; 53(23):5872-6. PubMed ID: 24788475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous "one pot" expressed protein ligation and CuI-catalyzed azide/alkyne cycloaddition for protein immobilization.
    Steinhagen M; Holland-Nell K; Meldal M; Beck-Sickinger AG
    Chembiochem; 2011 Nov; 12(16):2426-30. PubMed ID: 21901810
    [No Abstract]   [Full Text] [Related]  

  • 20. A cleavable azide resin for direct click chemistry mediated enrichment of alkyne-labeled proteins.
    Sibbersen C; Lykke L; Gregersen N; Jørgensen KA; Johannsen M
    Chem Commun (Camb); 2014 Oct; 50(81):12098-100. PubMed ID: 25168178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.