These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 23735651)
1. Use of impedance threshold device in conjunction with our novel adhesive glove device for ACD-CPR does not result in additional chest decompression. Shih A; Udassi S; Porvasnik SL; Lamb MA; Badugu S; Venkata GK; Lopez-Colon D; Haque IU; Zaritsky AL; Udassi JP Resuscitation; 2013 Oct; 84(10):1433-8. PubMed ID: 23735651 [TBL] [Abstract][Full Text] [Related]
2. Novel adhesive glove device (AGD) for active compression-decompression (ACD) CPR results in improved carotid blood flow and coronary perfusion pressure in piglet model of cardiac arrest. Udassi JP; Udassi S; Shih A; Lamb MA; Porvasnik SL; Zaritsky AL; Haque IU Resuscitation; 2012 Jun; 83(6):750-4. PubMed ID: 22209832 [TBL] [Abstract][Full Text] [Related]
3. Potential negative effects of epinephrine on carotid blood flow and ETCO2 during active compression-decompression CPR utilizing an impedance threshold device. Burnett AM; Segal N; Salzman JG; McKnite MS; Frascone RJ Resuscitation; 2012 Aug; 83(8):1021-4. PubMed ID: 22445865 [TBL] [Abstract][Full Text] [Related]
4. Improved chest recoil using an adhesive glove device for active compression-decompression CPR in a pediatric manikin model. Udassi JP; Udassi S; Lamb MA; Lamb KE; Theriaque DW; Shuster JJ; Zaritsky AL; Haque IU Resuscitation; 2009 Oct; 80(10):1158-63. PubMed ID: 19683849 [TBL] [Abstract][Full Text] [Related]
5. Hemodynamic improvement of a LUCAS 2 automated device by addition of an impedance threshold device in a pig model of cardiac arrest. Debaty G; Segal N; Matsuura T; Fahey B; Wayne M; Mahoney B; Frascone R; Lick C; Yannopoulos D Resuscitation; 2014 Dec; 85(12):1704-7. PubMed ID: 25263510 [TBL] [Abstract][Full Text] [Related]
6. Rapid induction of cerebral hypothermia is enhanced with active compression-decompression plus inspiratory impedance threshold device cardiopulmonary resusitation in a porcine model of cardiac arrest. Srinivasan V; Nadkarni VM; Yannopoulos D; Marino BS; Sigurdsson G; McKnite SH; Zook M; Benditt DG; Lurie KG J Am Coll Cardiol; 2006 Feb; 47(4):835-41. PubMed ID: 16487853 [TBL] [Abstract][Full Text] [Related]
7. Effects of an impedance threshold device on hemodynamics and restoration of spontaneous circulation in prolonged porcine ventricular fibrillation. Menegazzi JJ; Salcido DD; Menegazzi MT; Rittenberger JC; Suffoletto BP; Logue ES; Mader TJ Prehosp Emerg Care; 2007; 11(2):179-85. PubMed ID: 17454804 [TBL] [Abstract][Full Text] [Related]
8. Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest. Wolcke BB; Mauer DK; Schoefmann MF; Teichmann H; Provo TA; Lindner KH; Dick WF; Aeppli D; Lurie KG Circulation; 2003 Nov; 108(18):2201-5. PubMed ID: 14568898 [TBL] [Abstract][Full Text] [Related]
9. Effect of regulating airway pressure on intrathoracic pressure and vital organ perfusion pressure during cardiopulmonary resuscitation: a non-randomized interventional cross-over study. Kwon Y; Debaty G; Puertas L; Metzger A; Rees J; McKnite S; Yannopoulos D; Lurie K Scand J Trauma Resusc Emerg Med; 2015 Oct; 23():83. PubMed ID: 26511270 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the Boussignac Cardiac arrest device (B-card) during cardiopulmonary resuscitation in an animal model. Moore JC; Lamhaut L; Hutin A; Dodd KW; Robinson AE; Lick MC; Salverda BJ; Hinke MB; Labarere J; Debaty G; Segal N Resuscitation; 2017 Oct; 119():81-88. PubMed ID: 28800887 [TBL] [Abstract][Full Text] [Related]
11. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767 [TBL] [Abstract][Full Text] [Related]
12. Controlled sequential elevation of the head and thorax combined with active compression decompression cardiopulmonary resuscitation and an impedance threshold device improves neurological survival in a porcine model of cardiac arrest. Moore JC; Salverda B; Rojas-Salvador C; Lick M; Debaty G; G Lurie K Resuscitation; 2021 Jan; 158():220-227. PubMed ID: 33027619 [TBL] [Abstract][Full Text] [Related]
13. Head and thorax elevation during active compression decompression cardiopulmonary resuscitation with an impedance threshold device improves cerebral perfusion in a swine model of prolonged cardiac arrest. Moore JC; Segal N; Lick MC; Dodd KW; Salverda BJ; Hinke MB; Robinson AE; Debaty G; Lurie KG Resuscitation; 2017 Dec; 121():195-200. PubMed ID: 28827197 [TBL] [Abstract][Full Text] [Related]
14. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs. Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959 [TBL] [Abstract][Full Text] [Related]
15. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Yannopoulos D; Sigurdsson G; McKnite S; Benditt D; Lurie KG Resuscitation; 2004 Apr; 61(1):75-82. PubMed ID: 15081185 [TBL] [Abstract][Full Text] [Related]
16. Combination of active compression decompression cardiopulmonary resuscitation and the inspiratory impedance threshold device: state of the art. Frascone RJ; Bitz D; Lurie K Curr Opin Crit Care; 2004 Jun; 10(3):193-201. PubMed ID: 15166836 [TBL] [Abstract][Full Text] [Related]
17. A blinded, randomized controlled evaluation of an impedance threshold device during cardiopulmonary resuscitation in swine. Mader TJ; Kellogg AR; Smith J; Hynds-Decoteau R; Gaudet C; Caron J; Murphy B; Paquette A; Sherman LD Resuscitation; 2008 Jun; 77(3):387-94. PubMed ID: 18308451 [TBL] [Abstract][Full Text] [Related]
18. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation. Niemann JT; Rosborough JP; Kassabian L; Salami B Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933 [TBL] [Abstract][Full Text] [Related]
19. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224 [TBL] [Abstract][Full Text] [Related]
20. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]