These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23735821)
1. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Schäffler M; Semmler-Behnke M; Sarioglu H; Takenaka S; Wenk A; Schleh C; Hauck SM; Johnston BD; Kreyling WG Nanotechnology; 2013 Jul; 24(26):265103. PubMed ID: 23735821 [TBL] [Abstract][Full Text] [Related]
2. Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Deng ZJ; Liang M; Toth I; Monteiro M; Minchin RF Nanotoxicology; 2013 May; 7(3):314-22. PubMed ID: 22394123 [TBL] [Abstract][Full Text] [Related]
3. Complementary mass spectrometric techniques for the quantification of the protein corona: a case study on gold nanoparticles and human serum proteins. Fernández-Iglesias N; Bettmer J Nanoscale; 2015 Sep; 7(34):14324-31. PubMed ID: 26243030 [TBL] [Abstract][Full Text] [Related]
4. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. Hühn D; Kantner K; Geidel C; Brandholt S; De Cock I; Soenen SJ; Rivera Gil P; Montenegro JM; Braeckmans K; Müllen K; Nienhaus GU; Klapper M; Parak WJ ACS Nano; 2013 Apr; 7(4):3253-63. PubMed ID: 23566380 [TBL] [Abstract][Full Text] [Related]
5. Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles. Kaur K; Forrest JA Langmuir; 2012 Feb; 28(5):2736-44. PubMed ID: 22132998 [TBL] [Abstract][Full Text] [Related]
6. Probing the effects of cysteine residues on protein adsorption onto gold nanoparticles using wild-type and mutated GB3 proteins. Siriwardana K; Wang A; Vangala K; Fitzkee N; Zhang D Langmuir; 2013 Sep; 29(35):10990-6. PubMed ID: 23927741 [TBL] [Abstract][Full Text] [Related]
7. Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface. Stobiecka M; Hepel M Biomaterials; 2011 Apr; 32(12):3312-21. PubMed ID: 21306772 [TBL] [Abstract][Full Text] [Related]
8. Time evolution of the nanoparticle protein corona. Casals E; Pfaller T; Duschl A; Oostingh GJ; Puntes V ACS Nano; 2010 Jul; 4(7):3623-32. PubMed ID: 20553005 [TBL] [Abstract][Full Text] [Related]
9. Molecular interactions of different size AuNP-COOH nanoparticles with human fibrinogen. Deng J; Sun M; Zhu J; Gao C Nanoscale; 2013 Sep; 5(17):8130-7. PubMed ID: 23884371 [TBL] [Abstract][Full Text] [Related]
10. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Sonavane G; Tomoda K; Makino K Colloids Surf B Biointerfaces; 2008 Oct; 66(2):274-80. PubMed ID: 18722754 [TBL] [Abstract][Full Text] [Related]
11. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells. Chandran P; Riviere JE; Monteiro-Riviere NA Nanotoxicology; 2017 May; 11(4):507-519. PubMed ID: 28420299 [TBL] [Abstract][Full Text] [Related]
12. Blood protein coating of gold nanoparticles as potential tool for organ targeting. Schäffler M; Sousa F; Wenk A; Sitia L; Hirn S; Schleh C; Haberl N; Violatto M; Canovi M; Andreozzi P; Salmona M; Bigini P; Kreyling WG; Krol S Biomaterials; 2014 Mar; 35(10):3455-66. PubMed ID: 24461938 [TBL] [Abstract][Full Text] [Related]
13. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. Maiorano G; Sabella S; Sorce B; Brunetti V; Malvindi MA; Cingolani R; Pompa PP ACS Nano; 2010 Dec; 4(12):7481-91. PubMed ID: 21082814 [TBL] [Abstract][Full Text] [Related]
14. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. Niikura K; Matsunaga T; Suzuki T; Kobayashi S; Yamaguchi H; Orba Y; Kawaguchi A; Hasegawa H; Kajino K; Ninomiya T; Ijiro K; Sawa H ACS Nano; 2013 May; 7(5):3926-38. PubMed ID: 23631767 [TBL] [Abstract][Full Text] [Related]
15. Interaction of gold nanoparticles with common human blood proteins. Lacerda SH; Park JJ; Meuse C; Pristinski D; Becker ML; Karim A; Douglas JF ACS Nano; 2010 Jan; 4(1):365-79. PubMed ID: 20020753 [TBL] [Abstract][Full Text] [Related]
16. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Walkey CD; Olsen JB; Guo H; Emili A; Chan WC J Am Chem Soc; 2012 Feb; 134(4):2139-47. PubMed ID: 22191645 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Goy-López S; Juárez J; Alatorre-Meda M; Casals E; Puntes VF; Taboada P; Mosquera V Langmuir; 2012 Jun; 28(24):9113-26. PubMed ID: 22439664 [TBL] [Abstract][Full Text] [Related]
18. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS: a case study of gold nanoparticles. Matczuk M; Anecka K; Scaletti F; Messori L; Keppler BK; Timerbaev AR; Jarosz M Metallomics; 2015 Sep; 7(9):1364-70. PubMed ID: 26095799 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches. Papa E; Doucet JP; Sangion A; Doucet-Panaye A SAR QSAR Environ Res; 2016 Jul; 27(7):521-38. PubMed ID: 27329717 [TBL] [Abstract][Full Text] [Related]
20. Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Semmler-Behnke M; Lipka J; Wenk A; Hirn S; Schäffler M; Tian F; Schmid G; Oberdörster G; Kreyling WG Part Fibre Toxicol; 2014 Sep; 11():33. PubMed ID: 25928666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]