BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 23736218)

  • 1. Accurate prediction of a minimal region around a genetic association signal that contains the causal variant.
    Bochdanovits Z; Simón-Sánchez J; Jonker M; Hoogendijk WJ; van der Vaart A; Heutink P
    Eur J Hum Genet; 2014 Feb; 22(2):238-42. PubMed ID: 23736218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of common single nucleotide polymorphisms synthesizing quantitative trait association of rarer causal variants.
    Takeuchi F; Kobayashi S; Ogihara T; Fujioka A; Kato N
    Genome Res; 2011 Jul; 21(7):1122-30. PubMed ID: 21441355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-mapping of Parkinson's disease susceptibility loci identifies putative causal variants.
    Schilder BM; Raj T
    Hum Mol Genet; 2022 Mar; 31(6):888-900. PubMed ID: 34617105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying causal variants at loci with multiple signals of association.
    Hormozdiari F; Kostem E; Kang EY; Pasaniuc B; Eskin E
    Genetics; 2014 Oct; 198(2):497-508. PubMed ID: 25104515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Where is the causal variant? On the advantage of the family design over the case-control design in genetic association studies.
    Dandine-Roulland C; Perdry H
    Eur J Hum Genet; 2015 Oct; 23(10):1357-63. PubMed ID: 25585700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-phase designs to follow-up genome-wide association signals with DNA resequencing studies.
    Schaid DJ; Jenkins GD; Ingle JN; Weinshilboum RM
    Genet Epidemiol; 2013 Apr; 37(3):229-38. PubMed ID: 23348637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the efficacy of SNP filtering methods for identifying a single causal SNP in a known association region.
    Spencer AV; Cox A; Walters K
    Ann Hum Genet; 2014 Jan; 78(1):50-61. PubMed ID: 24205929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNCA variant associated with Parkinson disease and plasma alpha-synuclein level.
    Mata IF; Shi M; Agarwal P; Chung KA; Edwards KL; Factor SA; Galasko DR; Ginghina C; Griffith A; Higgins DS; Kay DM; Kim H; Leverenz JB; Quinn JF; Roberts JW; Samii A; Snapinn KW; Tsuang DW; Yearout D; Zhang J; Payami H; Zabetian CP
    Arch Neurol; 2010 Nov; 67(11):1350-6. PubMed ID: 21060011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying candidate causal variants via trans-population fine-mapping.
    Teo YY; Ong RT; Sim X; Tai ES; Chia KS
    Genet Epidemiol; 2010 Nov; 34(7):653-64. PubMed ID: 20839287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying rare and common disease associated variants in genomic data using Parkinson's disease as a model.
    Lin YC; Hsieh AR; Hsiao CL; Wu SJ; Wang HM; Lian IeB; Fann CS
    J Biomed Sci; 2014 Aug; 21(1):88. PubMed ID: 25175702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. alpha-Synuclein and Parkinson disease susceptibility.
    Winkler S; Hagenah J; Lincoln S; Heckman M; Haugarvoll K; Lohmann-Hedrich K; Kostic V; Farrer M; Klein C
    Neurology; 2007 Oct; 69(18):1745-50. PubMed ID: 17872362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data mining of high density genomic variant data for prediction of Alzheimer's disease risk.
    Briones N; Dinu V
    BMC Med Genet; 2012 Jan; 13():7. PubMed ID: 22273362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GBA variant E326K is associated with Parkinson's disease and explains a genome-wide association signal.
    Berge-Seidl V; Pihlstrøm L; Maple-Grødem J; Forsgren L; Linder J; Larsen JP; Tysnes OB; Toft M
    Neurosci Lett; 2017 Sep; 658():48-52. PubMed ID: 28830825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-synuclein and familial Parkinson's disease.
    Pankratz N; Nichols WC; Elsaesser VE; Pauciulo MW; Marek DK; Halter CA; Wojcieszek J; Rudolph A; Pfeiffer RF; Foroud T;
    Mov Disord; 2009 Jun; 24(8):1125-31. PubMed ID: 19412953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-mapping genetic associations.
    Hutchinson A; Asimit J; Wallace C
    Hum Mol Genet; 2020 Sep; 29(R1):R81-R88. PubMed ID: 32744321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting signatures of "synthetic associations" and "natural associations" from empirical patterns of human genetic variation.
    Chang D; Keinan A
    PLoS Comput Biol; 2012; 8(7):e1002600. PubMed ID: 22792059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing power of genome-wide association studies by collecting additional single-nucleotide polymorphisms.
    Kostem E; Lozano JA; Eskin E
    Genetics; 2011 Jun; 188(2):449-60. PubMed ID: 21467568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association scan identifies a risk locus for preeclampsia on 2q14, near the inhibin, beta B gene.
    Johnson MP; Brennecke SP; East CE; Göring HH; Kent JW; Dyer TD; Said JM; Roten LT; Iversen AC; Abraham LJ; Heinonen S; Kajantie E; Kere J; Kivinen K; Pouta A; Laivuori H; ; Austgulen R; Blangero J; Moses EK
    PLoS One; 2012; 7(3):e33666. PubMed ID: 22432041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prioritizing genetic variants for causality on the basis of preferential linkage disequilibrium.
    Zhu Q; Ge D; Heinzen EL; Dickson SP; Urban TJ; Zhu M; Maia JM; He M; Zhao Q; Shianna KV; Goldstein DB
    Am J Hum Genet; 2012 Sep; 91(3):422-34. PubMed ID: 22939045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.