These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 23736318)

  • 1. Coherence scanning interferometry: linear theory of surface measurement.
    Coupland J; Mandal R; Palodhi K; Leach R
    Appl Opt; 2013 Jun; 52(16):3662-70. PubMed ID: 23736318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherence scanning interferometry: measurement and correction of three-dimensional transfer and point-spread characteristics.
    Mandal R; Coupland J; Leach R; Mansfield D
    Appl Opt; 2014 Mar; 53(8):1554-63. PubMed ID: 24663411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scattering and three-dimensional imaging in surface topography measuring interference microscopy.
    Su R; Coupland J; Sheppard C; Leach R
    J Opt Soc Am A Opt Image Sci Vis; 2021 Feb; 38(2):A27-A42. PubMed ID: 33690543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of defocus on the transfer function of coherence scanning interferometry.
    Su R; Thomas M; Leach R; Coupland J
    Opt Lett; 2018 Jan; 43(1):82-85. PubMed ID: 29328211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considerations on the proposed linear theory of surface measurement for coherence scanning interferometers.
    Henning AJ; Giusca CL
    Appl Opt; 2017 Apr; 56(10):2960-2967. PubMed ID: 28375267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On tilt and curvature dependent errors and the calibration of coherence scanning interferometry.
    Su R; Wang Y; Coupland J; Leach R
    Opt Express; 2017 Feb; 25(4):3297-3310. PubMed ID: 28241545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of all orthogonal components of displacement in the volume of scattering materials using wavelength scanning interferometry.
    Chakraborty S; Ruiz PD
    J Opt Soc Am A Opt Image Sci Vis; 2012 Sep; 29(9):1776-85. PubMed ID: 23201931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction in interferometric synthetic aperture microscopy: comparison with optical coherence tomography and digital holographic microscopy.
    Sheppard CJ; Kou SS; Depeursinge C
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):244-50. PubMed ID: 22472753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modulation transfer function of an optical coherence tomography imaging system in turbid media.
    Woolliams PD; Tomlins PH
    Phys Med Biol; 2011 May; 56(9):2855-71. PubMed ID: 21478570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy.
    Van Aert S; Chen JH; Van Dyck D
    Ultramicroscopy; 2010 Oct; 110(11):1404-10. PubMed ID: 20655146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer controlled image sensor and its application.
    Sato T; Ishii J; Wadaka S
    Appl Opt; 1979 Feb; 18(4):485-8. PubMed ID: 20208748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative phase amplitude microscopy IV: imaging thick specimens.
    Bellair CJ; Curl CL; Allman BE; Harris PJ; Roberts A; Delbridge LM; Nugent KA
    J Microsc; 2004 Apr; 214(Pt 1):62-9. PubMed ID: 15049869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of coherence effects and linearity in microdensitometry.
    Reynolds GO; Smith AE
    Appl Opt; 1973 Jun; 12(6):1259-70. PubMed ID: 20125508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear systems characterization of the topographical spatial resolution of optical instruments.
    de Groot PJ; Daouda Z; Deck LL; Colonna de Lega X
    Appl Opt; 2024 May; 63(15):4201-4210. PubMed ID: 38856514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White light scanning interferometry adapted for large-area optical analysis of thick and rough hydroxyapatite layers.
    Pecheva E; Montgomery P; Montaner D; Pramatarova L
    Langmuir; 2007 Mar; 23(7):3912-8. PubMed ID: 17295521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional point spread function model for line-scanning confocal microscope with high-aperture objective.
    Dusch E; Dorval T; Vincent N; Wachsmuth M; Genovesio A
    J Microsc; 2007 Nov; 228(Pt 2):132-8. PubMed ID: 17970913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-frequency mutual coherence function of scattering from arbitrarily shaped rough objects.
    Zhang G; Wu Z
    Opt Express; 2011 Apr; 19(8):7007-19. PubMed ID: 21503015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive nanostructure and defect analysis using a simple 3D light-scatter sensor.
    Herffurth T; Schröder S; Trost M; Duparré A; Tünnermann A
    Appl Opt; 2013 May; 52(14):3279-87. PubMed ID: 23669841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging.
    Cimalla P; Walther J; Mehner M; Cuevas M; Koch E
    Opt Express; 2009 Oct; 17(22):19486-500. PubMed ID: 19997169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative-phase-contrast imaging of a two-level surface described as a 2D linear filtering process.
    Lovicar L; Komrska J; Chmelík R
    Opt Express; 2010 Sep; 18(20):20585-94. PubMed ID: 20940953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.