These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23736329)

  • 1. Investigation of the effect of noncircular scatterers on the band structure of anisotropic photonic crystal slabs.
    Fathollahi Khalkhali T; Rezaei B; Soltani Vala A; Kalafi M
    Appl Opt; 2013 Jun; 52(16):3745-52. PubMed ID: 23736329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.
    Mohammadi S; Eftekhar AA; Khelif A; Adibi A
    Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of annular photonic crystal slabs.
    Kurt H; Hao R; Chen Y; Feng J; Blair J; Gaillot DP; Summers C; Citrin DS; Zhou Z
    Opt Lett; 2008 Jul; 33(14):1614-6. PubMed ID: 18628815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced bandgap in annular photonic-crystal silicon-on-insulator asymmetric slabs.
    Hou J; Citrin DS; Wu H; Gao D; Zhou Z
    Opt Lett; 2011 Jun; 36(12):2263-5. PubMed ID: 21685987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promising low-damage fabrication method for the photonic crystals with hexagonal or triangular air holes: selective area metal organic vapor phase epitaxy.
    Yang L; Motohisa J; Takeda J; Fukui T
    Opt Express; 2005 Dec; 13(26):10823-32. PubMed ID: 19503300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of large band gap with anisotropic annular photonic crystal slab structure.
    Shi P; Huang K; Kang XL; Li YP
    Opt Express; 2010 Mar; 18(5):5221-8. PubMed ID: 20389535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Spectral properties of two-dimensional photonic crystal quantum well structures].
    Wang DD; Wang YS; Xu Z; Deng LE; Zhang CX; Han X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):988-90. PubMed ID: 18720784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved fake mode free plane wave expansion method.
    Jiang B; Zhou W; Chen W; Liu A; Zheng W
    Opt Lett; 2011 Aug; 36(15):2788-90. PubMed ID: 21808313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher order modes in photonic crystal slabs.
    Gansch R; Kalchmair S; Detz H; Andrews AM; Klang P; Schrenk W; Strasser G
    Opt Express; 2011 Aug; 19(17):15990-5. PubMed ID: 21934963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of large absolute photonic bandgaps in two-dimensional plasma photonic crystal containing anisotropic material.
    Li Q; Xie K; Yuan D; Wei Z; Hu L; Mao Q; Jiang H; Hu Z; Wang E
    Appl Opt; 2016 Oct; 55(30):8541-8549. PubMed ID: 27828133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A birefringent reflector from a 1D anisotropic photonic crystal.
    Ouchani N; Bria D; Djafari Rouhani B; Nougaoui A
    J Phys Condens Matter; 2009 Dec; 21(48):485401. PubMed ID: 21832515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection.
    Shi L; Pottier P; Skorobogatiy M; Peter YA
    Opt Express; 2009 Jun; 17(13):10623-32. PubMed ID: 19550458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions.
    Hwang J; Song MH; Park B; Nishimura S; Toyooka T; Wu JW; Takanishi Y; Ishikawa K; Takezoe H
    Nat Mater; 2005 May; 4(5):383-7. PubMed ID: 15852019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical devices based on liquid crystal photonic bandgap fibres.
    Larsen T; Bjarklev A; Hermann D; Broeng J
    Opt Express; 2003 Oct; 11(20):2589-96. PubMed ID: 19471372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of a square-lattice photonic crystal within the partial bandgap.
    Tang Z; Peng R; Ye Y; Zhao C; Fan D; Zhang H; Wen S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):379-84. PubMed ID: 17206253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous bandgaps in LiNbO3 phoxonic crystal slab.
    Rolland Q; Dupont S; Gazalet J; Kastelik JC; Pennec Y; Djafari-Rouhani B; Laude V
    Opt Express; 2014 Jun; 22(13):16288-97. PubMed ID: 24977880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals.
    Toader O; John S
    Science; 2001 May; 292(5519):1133-5. PubMed ID: 11349142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study on photonic devices based on a commensurate two-pattern photonic crystal.
    Jia L; Thomas EL
    Opt Lett; 2011 Sep; 36(17):3416-8. PubMed ID: 21886229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cylinder gratings in conical incidence with applications to modes of air-cored photonic crystal fibers.
    Smith GH; Botten LC; McPhedran RC; Nicorovici NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056604. PubMed ID: 12513620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.