These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 23736767)

  • 1. Self-modulated band gap in boron nitride nanoribbons and hydrogenated sheets.
    Zhang Z; Guo W; Yakobson BI
    Nanoscale; 2013 Jul; 5(14):6381-7. PubMed ID: 23736767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons.
    Chen W; Li Y; Yu G; Li CZ; Zhang SB; Zhou Z; Chen Z
    J Am Chem Soc; 2010 Feb; 132(5):1699-705. PubMed ID: 20085366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable doping and band gap of graphene on functionalized hexagonal boron nitride with hydrogen and fluorine.
    Tang S; Yu J; Liu L
    Phys Chem Chem Phys; 2013 Apr; 15(14):5067-77. PubMed ID: 23450178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band gap opening of graphene by doping small boron nitride domains.
    Fan X; Shen Z; Liu AQ; Kuo JL
    Nanoscale; 2012 Mar; 4(6):2157-65. PubMed ID: 22344594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride.
    Liu Z; Wang RZ; Liu LM; Lau WM; Yan H
    Phys Chem Chem Phys; 2015 May; 17(17):11692-9. PubMed ID: 25866036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.
    Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP
    Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field.
    Tang Q; Bao J; Li Y; Zhou Z; Chen Z
    Nanoscale; 2014 Aug; 6(15):8624-34. PubMed ID: 24824079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes.
    Li X; Wu X; Zeng XC; Yang J
    ACS Nano; 2012 May; 6(5):4104-12. PubMed ID: 22482995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorinating hexagonal boron nitride into diamond-like nanofilms with tunable band gap and ferromagnetism.
    Zhang Z; Zeng XC; Guo W
    J Am Chem Soc; 2011 Sep; 133(37):14831-8. PubMed ID: 21834534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons.
    Qi J; Qian X; Qi L; Feng J; Shi D; Li J
    Nano Lett; 2012 Mar; 12(3):1224-8. PubMed ID: 22364268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron nitride nanotubes and nanosheets.
    Golberg D; Bando Y; Huang Y; Terao T; Mitome M; Tang C; Zhi C
    ACS Nano; 2010 Jun; 4(6):2979-93. PubMed ID: 20462272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning electronic and magnetic properties of MoO3 sheets by cutting, hydrogenation, and external strain: a computational investigation.
    Li F; Chen Z
    Nanoscale; 2013 Jun; 5(12):5321-33. PubMed ID: 23392527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2010 Mar; 12(10):2313-20. PubMed ID: 20449344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces.
    Yang J; Yang Y; Waltermire SW; Wu X; Zhang H; Gutu T; Jiang Y; Chen Y; Zinn AA; Prasher R; Xu TT; Li D
    Nat Nanotechnol; 2011 Dec; 7(2):91-5. PubMed ID: 22157726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric bandgaps and Landau levelsĀ in a Bernal-stacked hexagonal boron-nitride bilayer.
    Zhai X; Jin G
    J Phys Condens Matter; 2014 Jan; 26(1):015304. PubMed ID: 24275264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Half-metallicity modulation of hybrid BN-C nanotubes by external electric fields: a first-principles study.
    Liang Y; Kawazoe Y
    J Chem Phys; 2014 Jun; 140(23):234702. PubMed ID: 24952555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable band gap of boron nitride interfaces under uniaxial pressure.
    Moraes EE; Manhabosco TM; de Oliveira AB; Batista RJ
    J Phys Condens Matter; 2012 Nov; 24(47):475502. PubMed ID: 23103478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.