These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2373697)

  • 1. Glucose transport in lysosomal membrane vesicles. Kinetic demonstration of a carrier for neutral hexoses.
    Mancini GM; Beerens CE; Verheijen FW
    J Biol Chem; 1990 Jul; 265(21):12380-7. PubMed ID: 2373697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides.
    Mancini GM; de Jonge HR; Galjaard H; Verheijen FW
    J Biol Chem; 1989 Sep; 264(26):15247-54. PubMed ID: 2768261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sialic acid storage diseases. A multiple lysosomal transport defect for acidic monosaccharides.
    Mancini GM; Beerens CE; Aula PP; Verheijen FW
    J Clin Invest; 1991 Apr; 87(4):1329-35. PubMed ID: 2010546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutral-sugar transport by rat liver lysosomes.
    Jonas AJ; Conrad P; Jobe H
    Biochem J; 1990 Dec; 272(2):323-6. PubMed ID: 2268262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of hexoses across the liver-cell membrane.
    Baur H; Heldt HW
    Eur J Biochem; 1977 Apr; 74(2):397-403. PubMed ID: 856580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional reconstitution of the lysosomal sialic acid carrier into proteoliposomes.
    Mancini GM; Beerens CE; Galjaard H; Verheijen FW
    Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6609-13. PubMed ID: 1631163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The uptake index method applied to studies on the blood-retinal barrier. II. Transport of several hexoses by a common carrier.
    Alm A; Törnquist P; Mäepea O
    Acta Physiol Scand; 1981 Sep; 113(1):81-4. PubMed ID: 7315441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter.
    Havelaar AC; Mancini GM; Beerens CE; Souren RM; Verheijen FW
    J Biol Chem; 1998 Dec; 273(51):34568-74. PubMed ID: 9852127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural requirements for active intestinal transport. The nature of the carrier-sugar bonding at C-2 and the ring oxygen of the sugar.
    Barnett JE; Ralph A; Munday KA
    Biochem J; 1970 Aug; 118(5):843-50. PubMed ID: 5476727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B.
    Seyfang A; Duszenko M
    Eur J Biochem; 1991 Nov; 202(1):191-6. PubMed ID: 1935976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of blood-brain transport of hexoses.
    Pardridge WM; Oldendorf WH
    Biochim Biophys Acta; 1975 Mar; 382(3):377-92. PubMed ID: 1125240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP stimulates lysosomal sulphate transport at neutral pH: evidence for phosphorylation of the lysosomal sulphate carrier.
    Chou HF; Passage M; Jonas AJ
    Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):781-6. PubMed ID: 9581556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae.
    Muiry JA; Gunn TC; McDonald TP; Bradley SA; Tate CG; Henderson PJ
    Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):833-42. PubMed ID: 8384447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of vascular and luminal hexoses on rat intestinal basolateral glucose transport.
    Tsang R; Ao Z; Cheeseman C
    Can J Physiol Pharmacol; 1994 Apr; 72(4):317-26. PubMed ID: 7922862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of D-galactose transport systems by luminal membrane vesicles from rabbit kidney.
    Røigaard-Petersen H; Jacobsen C; Sheikh MI
    Biochim Biophys Acta; 1986 Apr; 856(3):578-84. PubMed ID: 3964698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of N-acetyl-D-glucosamine and N-acetyl-D-galactosamine by rat liver lysosomes.
    Jonas AJ; Speller RJ; Conrad PB; Dubinsky WP
    J Biol Chem; 1989 Mar; 264(9):4953-6. PubMed ID: 2784441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses.
    Scharrer E; Grenacher B
    J Vet Med A Physiol Pathol Clin Med; 2000 Dec; 47(10):617-26. PubMed ID: 11199210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar transport in rat liver lysosomes. Direct demonstration by using labelled sugars.
    Maguire GA; Docherty K; Hales CN
    Biochem J; 1983 Apr; 212(1):211-8. PubMed ID: 6409099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a specific transport of D-hexoses across the human term placenta in vitro.
    Carstensen M; Leichweiss HP; Molsen G; Schröder H
    Arch Gynakol; 1977 May; 222(3):187-96. PubMed ID: 578093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar uptake into brush border vesicles from normal human kidney.
    Turner RJ; Silverman M
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2825-9. PubMed ID: 142986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.