These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 23737141)

  • 1. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches.
    Liu R; Hu J
    Proteins; 2013 Nov; 81(11):1885-99. PubMed ID: 23737141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RBRDetector: improved prediction of binding residues on RNA-binding protein structures using complementary feature- and template-based strategies.
    Yang XX; Deng ZL; Liu R
    Proteins; 2014 Oct; 82(10):2455-71. PubMed ID: 24854765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.
    Yang X; Wang J; Sun J; Liu R
    PLoS One; 2015; 10(7):e0133260. PubMed ID: 26176857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning information retrieval approach to protein fold recognition.
    Cheng J; Baldi P
    Bioinformatics; 2006 Jun; 22(12):1456-63. PubMed ID: 16547073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information.
    Liu R; Hu J
    BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction-based fingerprints of protein-protein interactions.
    Porollo A; Meller J
    Proteins; 2007 Feb; 66(3):630-45. PubMed ID: 17152079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein backbone angle prediction with machine learning approaches.
    Kuang R; Leslie CS; Yang AS
    Bioinformatics; 2004 Jul; 20(10):1612-21. PubMed ID: 14988121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting.
    Ye K; Feenstra KA; Heringa J; Ijzerman AP; Marchiori E
    Bioinformatics; 2008 Jan; 24(1):18-25. PubMed ID: 18024975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning.
    Maheshwari S; Brylinski M
    J Mol Recognit; 2015 Jan; 28(1):35-48. PubMed ID: 26268369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.
    Shamim MT; Anwaruddin M; Nagarajaram HA
    Bioinformatics; 2007 Dec; 23(24):3320-7. PubMed ID: 17989092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNAPred: Accurate Identification of DNA-Binding Sites from Protein Sequence by Ensembled Hyperplane-Distance-Based Support Vector Machines.
    Zhu YH; Hu J; Song XN; Yu DJ
    J Chem Inf Model; 2019 Jun; 59(6):3057-3071. PubMed ID: 30943723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence.
    Lin HN; Chang JM; Wu KP; Sung TY; Hsu WL
    Bioinformatics; 2005 Aug; 21(15):3227-33. PubMed ID: 15932901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ensemble of reduced alphabets with protein encoding based on grouped weight for predicting DNA-binding proteins.
    Nanni L; Lumini A
    Amino Acids; 2009 Feb; 36(2):167-75. PubMed ID: 18288459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction.
    Yu DJ; Hu J; Li QM; Tang ZM; Yang JY; Shen HB
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):45-58. PubMed ID: 25730499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residue-level prediction of DNA-binding sites and its application on DNA-binding protein predictions.
    Bhardwaj N; Lu H
    FEBS Lett; 2007 Mar; 581(5):1058-66. PubMed ID: 17316627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors.
    Xiao F; Shen HB
    J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.
    Chen P; Li J; Wong L; Kuwahara H; Huang JZ; Gao X
    Proteins; 2013 Aug; 81(8):1351-62. PubMed ID: 23504705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.
    Wang L; Liu ZP; Zhang XS; Chen L
    Protein Eng Des Sel; 2012 Mar; 25(3):119-26. PubMed ID: 22258275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.