These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 23737241)

  • 1. Large-scale analysis of the dynamics of enzymes.
    Tobi D
    Proteins; 2013 Nov; 81(11):1910-8. PubMed ID: 23737241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics alignment: comparison of protein dynamics in the SCOP database.
    Tobi D
    Proteins; 2012 Apr; 80(4):1167-76. PubMed ID: 22275069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses.
    Ahmed A; Villinger S; Gohlke H
    Proteins; 2010 Dec; 78(16):3341-52. PubMed ID: 20848551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.
    Naritomi Y; Fuchigami S
    J Chem Phys; 2011 Feb; 134(6):065101. PubMed ID: 21322734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical comparison between Drosha and Dicer reveals functional motion similarities and dissimilarities.
    Aharoni R; Tobi D
    PLoS One; 2019; 14(12):e0226147. PubMed ID: 31821368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Gaussian network modes alignment reveals dynamically variable regions: the hemoglobin case.
    Davis M; Tobi D
    Proteins; 2014 Sep; 82(9):2097-105. PubMed ID: 24658921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic.
    Krebs WG; Alexandrov V; Wilson CA; Echols N; Yu H; Gerstein M
    Proteins; 2002 Sep; 48(4):682-95. PubMed ID: 12211036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function.
    Bahar I; Erman B; Jernigan RL; Atilgan AR; Covell DG
    J Mol Biol; 1999 Jan; 285(3):1023-37. PubMed ID: 9887265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of dynamics in enzyme activity.
    Daniel RM; Dunn RV; Finney JL; Smith JC
    Annu Rev Biophys Biomol Struct; 2003; 32():69-92. PubMed ID: 12471064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical comparison between myoglobin and hemoglobin.
    Aharoni R; Tobi D
    Proteins; 2018 Nov; 86(11):1176-1183. PubMed ID: 30183107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to alpha-amylase inhibitor.
    Doruker P; Atilgan AR; Bahar I
    Proteins; 2000 Aug; 40(3):512-24. PubMed ID: 10861943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective motions of rigid fragments in protein structures from smoothed electron density distributions.
    Leherte L; Vercauteren DP
    J Comput Chem; 2008 Jul; 29(9):1472-89. PubMed ID: 18270960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal mode analysis of proteins: a comparison of rigid cluster modes with C(alpha) coarse graining.
    Schuyler AD; Chirikjian GS
    J Mol Graph Model; 2004 Jan; 22(3):183-93. PubMed ID: 14629977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of protein dynamics in reaction rate enhancement by enzymes.
    Agarwal PK
    J Am Chem Soc; 2005 Nov; 127(43):15248-56. PubMed ID: 16248667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid simulation of protein motion: merging flexibility, rigidity and normal mode analyses.
    Jimenez-Roldan JE; Freedman RB; Römer RA; Wells SA
    Phys Biol; 2012 Feb; 9(1):016008. PubMed ID: 22313618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms.
    Bahar I; Jernigan RL
    J Mol Biol; 1998 Sep; 281(5):871-84. PubMed ID: 9719641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies.
    Chennubhotla C; Rader AJ; Yang LW; Bahar I
    Phys Biol; 2005 Nov; 2(4):S173-80. PubMed ID: 16280623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. vGNM: a better model for understanding the dynamics of proteins in crystals.
    Song G; Jernigan RL
    J Mol Biol; 2007 Jun; 369(3):880-93. PubMed ID: 17451743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.