These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23737667)

  • 1. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation.
    Tran PA; Webster TJ
    Int J Nanomedicine; 2013; 8():2001-9. PubMed ID: 23737667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy.
    Moraila CL; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez M; Rodríguez-Valverde MÁ
    J Colloid Interface Sci; 2019 Mar; 539():448-456. PubMed ID: 30605814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of virtual air walls on micropallet arrays.
    Wang Y; Bachman M; Sims CE; Li GP; Allbritton NL
    Anal Chem; 2007 Sep; 79(18):7104-9. PubMed ID: 17705452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects.
    Rupp F; Gittens RA; Scheideler L; Marmur A; Boyan BD; Schwartz Z; Geis-Gerstorfer J
    Acta Biomater; 2014 Jul; 10(7):2894-906. PubMed ID: 24590162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wettability studies of topologically distinct titanium surfaces.
    Kulkarni M; Patil-Sen Y; Junkar I; Kulkarni CV; Lorenzetti M; Iglič A
    Colloids Surf B Biointerfaces; 2015 May; 129():47-53. PubMed ID: 25819365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wettability conversion from superoleophobic to superhydrophilic on titania/single-walled carbon nanotube composite coatings.
    Zhang M; Zhang T; Cui T
    Langmuir; 2011 Aug; 27(15):9295-301. PubMed ID: 21732680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography versus chemistry - How can we control surface wetting?
    Lößlein SM; Mücklich F; Grützmacher PG
    J Colloid Interface Sci; 2022 Mar; 609():645-656. PubMed ID: 34839911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rates of cavity filling by liquids.
    Seo D; Schrader AM; Chen SY; Kaufman Y; Cristiani TR; Page SH; Koenig PH; Gizaw Y; Lee DW; Israelachvili JN
    Proc Natl Acad Sci U S A; 2018 Aug; 115(32):8070-8075. PubMed ID: 30026197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Wenzel and Cassie-Baxter: second-order effects on the wetting of rough surfaces.
    Hejazi V; Moghadam AD; Rohatgi P; Nosonovsky M
    Langmuir; 2014 Aug; 30(31):9423-9. PubMed ID: 25051526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging the air-water interface: Characterising biomimetic and natural hydrophobic surfaces using in situ atomic force microscopy.
    Elbourne A; Dupont MF; Collett S; Truong VK; Xu X; Vrancken N; Baulin V; Ivanova EP; Crawford RJ
    J Colloid Interface Sci; 2019 Feb; 536():363-371. PubMed ID: 30380435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets.
    Zahiri B; Sow PK; Kung CH; Mérida W
    J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf.
    Jiang ZX; Geng L; Huang YD; Guan SA; Dong W; Ma ZY
    J Colloid Interface Sci; 2011 Feb; 354(2):866-72. PubMed ID: 21115180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of nanoscale particle roughness on the stability of Pickering emulsions.
    San-Miguel A; Behrens SH
    Langmuir; 2012 Aug; 28(33):12038-43. PubMed ID: 22846043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting behavior and nanotribological properties of silicon nanopatterns combined with diamond-like carbon and perfluoropolyether films.
    Pham DC; Na K; Piao S; Cho IJ; Jhang KY; Yoon ES
    Nanotechnology; 2011 Sep; 22(39):395303. PubMed ID: 21896974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.