These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23737730)

  • 1. Hysteresis modeling of magnetic shape memory alloy actuator based on Krasnosel'skii-Pokrovskii model.
    Zhou M; Wang S; Gao W
    ScientificWorldJournal; 2013; 2013():865176. PubMed ID: 23737730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model reference adaptive control based on kp model for magnetically controlled shape memory alloy actuators.
    Zhou M; Zhang Y; Ji K; Zhu D
    J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e31-e37. PubMed ID: 28574096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.
    Zhou M; Zhang Q; Wang J
    PLoS One; 2014; 9(5):e97086. PubMed ID: 24828010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research on hysteresis of piezoceramic actuator based on the Duhem model.
    Zhou M; Wang J
    ScientificWorldJournal; 2013; 2013():814919. PubMed ID: 23861658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feed-forward control for magnetic shape memory alloy actuators based on the radial basis function neural network model.
    Zhou M; Wang Y; Xu R; Zhang Q; Zhu D
    J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e25-e30. PubMed ID: 28525678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Tracking Control for the Piezoelectric Actuated Stage Using the Krasnosel'skii-Pokrovskii Operator.
    Xu R; Tian D; Wang Z
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32466151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Control of Magnetic Shape Memory Alloy Actuators.
    Minorowicz B; Milecki A
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking control of shape-memory-alloy actuators based on self-sensing feedback and inverse hysteresis compensation.
    Liu SH; Huang TS; Yen JY
    Sensors (Basel); 2010; 10(1):112-27. PubMed ID: 22315530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Laguerre based adaptive predictive control to Shape Memory Alloy (SMA) Actuator.
    Kannan S; Giraud-Audine C; Patoor E
    ISA Trans; 2013 Jul; 52(4):469-79. PubMed ID: 23541523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate Dependent Krasnoselskii-Pokrovskii Modeling and Inverse Compensation Control of Piezoceramic Actuated Stages.
    Li W; Nie L; Liu Y; Zhou M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-sensing force control of a piezoelectric actuator.
    Badel A; Qiu J; Nakano T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Dec; 55(12):2571-81. PubMed ID: 19126482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hysteresis in a carbon nanotube based electroactive polymer microfiber actuator: numerical modeling.
    Sohn K; Shin SR; Park SJ; Kim SJ; Yi BJ; Han SY; Kim SI
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3974-9. PubMed ID: 18047099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and Position Control Simulation Research on Shape Memory Alloy Spring Actuator.
    Hu B; Liu F; Mao B; Chen Z; Yu H
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of Shape Memory Alloy Actuator with the Usage of LSTM Neural Network.
    Rączka W; Sibielak M
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hysteresis modeling and compensation of a rotary series elastic actuator with nonlinear stiffness.
    Zhou L; Chen W; Chen W; Bai S; Zhao Z; Wang J; Yu H
    Rev Sci Instrum; 2021 Sep; 92(9):095005. PubMed ID: 34598513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Based on a Two-Step Parameter Identification Strategy for Liquid Crystal Elastomer Actuator Considering Dynamic Phase Transition Process.
    Wu J; Ye W; Wang Y; Su CY
    IEEE Trans Cybern; 2023 Jul; 53(7):4423-4434. PubMed ID: 35731753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Stage Shape Memory Alloy Identification Based on the Hammerstein-Wiener Model.
    Copaci D; Moreno L; Blanco D
    Front Robot AI; 2019; 6():83. PubMed ID: 33501098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and development of non-magnetic hierarchical actuator powered by shape memory alloy based bipennate muscle.
    Chaurasiya KL; Harsha AS; Sinha Y; Bhattacharya B
    Sci Rep; 2022 Jun; 12(1):10758. PubMed ID: 35750791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the nonlinear, double-dynamic Taguchi method to the precision positioning device using combined piezo-VCM actuator.
    Liu YT; Fung RF; Wang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Feb; 54(2):240-50. PubMed ID: 17328322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.