BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23737949)

  • 1. Testing the utility of an integrated analysis of copy number and transcriptomics datasets for inferring gene regulatory relationships.
    Goh XY; Newton R; Wernisch L; Fitzgerald R
    PLoS One; 2013; 8(5):e63780. PubMed ID: 23737949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A meta-analysis of multiple matched copy number and transcriptomics data sets for inferring gene regulatory relationships.
    Newton R; Wernisch L
    PLoS One; 2014; 9(8):e105522. PubMed ID: 25148247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomarker identification and trans-regulatory network analyses in esophageal adenocarcinoma and Barrett's esophagus.
    Lv J; Guo L; Wang JH; Yan YZ; Zhang J; Wang YY; Yu Y; Huang YF; Zhao HP
    World J Gastroenterol; 2019 Jan; 25(2):233-244. PubMed ID: 30670912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated molecular analysis reveals complex interactions between genomic and epigenomic alterations in esophageal adenocarcinomas.
    Peng D; Guo Y; Chen H; Zhao S; Washington K; Hu T; Shyr Y; El-Rifai W
    Sci Rep; 2017 Jan; 7():40729. PubMed ID: 28102292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated approach to infer dynamic protein-gene interactions - A case study of the human P53 protein.
    Wang J; Wu Q; Hu XT; Tian T
    Methods; 2016 Nov; 110():3-13. PubMed ID: 27514497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring regulatory networks.
    Li H; Xuan J; Wang Y; Zhan M
    Front Biosci; 2008 Jan; 13():263-75. PubMed ID: 17981545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating inter-chromosomal regulatory relationships through a comprehensive meta-analysis of matched copy number and transcriptomics data sets.
    Newton R; Wernisch L
    BMC Genomics; 2015 Nov; 16():967. PubMed ID: 26581858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative analysis of copy number and transcriptional expression profiles in esophageal cancer to identify a novel driver gene for therapy.
    Dong G; Mao Q; Yu D; Zhang Y; Qiu M; Dong G; Chen Q; Xia W; Wang J; Xu L; Jiang F
    Sci Rep; 2017 Feb; 7():42060. PubMed ID: 28169357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The panoramic picture of pepsinogen gene family with pan-cancer.
    Shen S; Li H; Liu J; Sun L; Yuan Y
    Cancer Med; 2020 Dec; 9(23):9064-9080. PubMed ID: 33067881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the effects of copy-number variation in double and triple mutant combinations.
    Carter GW; Hays M; Li S; Galitski T
    Pac Symp Biocomput; 2012; ():19-30. PubMed ID: 22174259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Analysis of Gene Expression Change Associated with Copy Number of Enhancers in Pancreatic Adenocarcinoma.
    Kumar R; Patiyal S; Kumar V; Nagpal G; Raghava GPS
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction.
    Pham VV; Zhang J; Liu L; Truong B; Xu T; Nguyen TT; Li J; Le TD
    BMC Bioinformatics; 2019 Mar; 20(1):143. PubMed ID: 30876399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of gene regulatory networks in plant growth and development.
    Haque S; Ahmad JS; Clark NM; Williams CM; Sozzani R
    Curr Opin Plant Biol; 2019 Feb; 47():96-105. PubMed ID: 30445315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive multi-omics analysis identified core molecular processes in esophageal cancer and revealed GNGT2 as a potential prognostic marker.
    Liu GM; Ji X; Lu TC; Duan LW; Jia WY; Liu Y; Sun ML; Luo YG
    World J Gastroenterol; 2019 Dec; 25(48):6890-6901. PubMed ID: 31908393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Correlation to Causality: Statistical Approaches to Learning Regulatory Relationships in Large-Scale Biomolecular Investigations.
    Ness RO; Sachs K; Vitek O
    J Proteome Res; 2016 Mar; 15(3):683-90. PubMed ID: 26731284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miRLAB: An R Based Dry Lab for Exploring miRNA-mRNA Regulatory Relationships.
    Le TD; Zhang J; Liu L; Liu H; Li J
    PLoS One; 2015; 10(12):e0145386. PubMed ID: 26716983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying causal genes and dysregulated pathways in complex diseases.
    Kim YA; Wuchty S; Przytycka TM
    PLoS Comput Biol; 2011 Mar; 7(3):e1001095. PubMed ID: 21390271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genome-wide analysis of long noncoding RNA profile identifies differentially expressed lncRNAs associated with Esophageal cancer.
    Liu W; Zhang Y; Chen M; Shi L; Xu L; Zou X
    Cancer Med; 2018 Aug; 7(8):4181-4189. PubMed ID: 29926523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.