BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2373795)

  • 21. Direct measurement of intra-cochlear pressure waves.
    Olson ES
    Nature; 1999 Dec; 402(6761):526-9. PubMed ID: 10591211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluid-structure interaction of the stereocilia bundle in relation to mechanotransduction.
    Zetes DE; Steele CR
    J Acoust Soc Am; 1997 Jun; 101(6):3593-601. PubMed ID: 9193047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The sulcus connection. On a mode of participation of outer hair cells in cochlear mechanics.
    de Boer E
    J Acoust Soc Am; 1993 May; 93(5):2845-59. PubMed ID: 8315149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluid motion in the mammalian organ of Corti. A possible source of the second filter.
    Frommer GH
    Acta Otolaryngol Suppl; 1979; 363(363):1-22. PubMed ID: 293118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of acoustic trauma on the tectorial membrane, stereocilia, and hearing sensitivity: possible mechanisms underlying damage, recovery, and protection.
    Canlon B
    Scand Audiol Suppl; 1988; 27():1-45. PubMed ID: 3043645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory primary afferents in the starling: correlation of function and morphology.
    Gleich O
    Hear Res; 1989 Feb; 37(3):255-67. PubMed ID: 2468635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Power dissipation in the subtectorial space of the mammalian cochlea is modulated by inner hair cell stereocilia.
    Prodanovic S; Gracewski S; Nam JH
    Biophys J; 2015 Feb; 108(3):479-88. PubMed ID: 25650916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The level dependence of response phase: observations from cochlear hair cells.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 1998 Jul; 104(1):356-69. PubMed ID: 9670529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model for signal transmission in an ear having hair cells with free-standing stereocilia. IV. Mechanoelectric transduction stage.
    Weiss TF; Leong R
    Hear Res; 1985; 20(2):175-95. PubMed ID: 4086382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endolymph formation in the inner ear of pigeons.
    Ninoyu O; Hommerich C; Morgenstern C
    ORL J Otorhinolaryngol Relat Spec; 1987; 49(1):1-8. PubMed ID: 3561967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A model of cochlear mechanics with outer hair cell motility.
    Neely ST
    J Acoust Soc Am; 1993 Jul; 94(1):137-46. PubMed ID: 8354757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The response of hair cells in the basal turn of the guinea-pig cochlea to tones.
    Cody AR; Russell IJ
    J Physiol; 1987 Feb; 383():551-69. PubMed ID: 3656135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cochlear potential difference between endolymph fluid and the hair cell's interior: a retold interpretation based on the Goldman equation.
    Kurbel S; Borzan V; Golem H; Dinjar K
    Med Glas (Zenica); 2017 Feb; 14(1):8-15. PubMed ID: 28165435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synaptic studies inform the functional diversity of cochlear afferents.
    Fuchs PA; Glowatzki E
    Hear Res; 2015 Dec; 330(Pt A):18-25. PubMed ID: 26403507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging hair cell transduction at the speed of sound: dynamic behavior of mammalian stereocilia.
    Fridberger A; Tomo I; Ulfendahl M; Boutet de Monvel J
    Proc Natl Acad Sci U S A; 2006 Feb; 103(6):1918-23. PubMed ID: 16446441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells.
    Furness DN; Zetes DE; Hackney CM; Steele CR
    Proc Biol Sci; 1997 Jan; 264(1378):45-51. PubMed ID: 9061959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of lymph composition on an in vitro preparation of the alligator lizard cochlea.
    Freeman DM; Hendrix DK; Shah D; Fan LF; Weiss TF
    Hear Res; 1993 Feb; 65(1-2):83-98. PubMed ID: 8458762
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mathematical modeling of cochlear mechanics.
    Neely ST
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 2):345-52. PubMed ID: 4031241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of cochlear function in an acute endolymphatic hydrops model in the guinea pig by measuring low-level DPOAEs.
    Valk WL; Wit HP; Albers FW
    Hear Res; 2004 Jun; 192(1-2):47-56. PubMed ID: 15157962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.