These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 23738033)

  • 1. Diabetic neuropathy and oxidative stress: therapeutic perspectives.
    Hosseini A; Abdollahi M
    Oxid Med Cell Longev; 2013; 2013():168039. PubMed ID: 23738033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The role of oxidative stress in the development of diabetic neuropathy].
    Sztanek F; Molnárné Molnár Á; Balogh Z
    Orv Hetil; 2016 Dec; 157(49):1939-1946. PubMed ID: 27917671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in understanding the role of oxidative stress in diabetic neuropathy.
    Shakeel M
    Diabetes Metab Syndr; 2015; 9(4):373-8. PubMed ID: 25470637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients.
    Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ
    Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging drugs for diabetic neuropathy.
    Tahrani AA; Askwith T; Stevens MJ
    Expert Opin Emerg Drugs; 2010 Dec; 15(4):661-83. PubMed ID: 20795891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pathomechanism of diabetic neuropathy: background of the pathogenesis-oriented therapy].
    Winkler G; Kempler P
    Orv Hetil; 2010 Jun; 151(24):971-81. PubMed ID: 20519180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenesis and Molecular Treatment Strategies of Diabetic Neuropathy Collateral Glucose-Utilizing Pathways in Diabetic Polyneuropathy.
    Mizukami H; Osonoi S
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow expression of poly(ADP-ribose) polymerase underlies diabetic neuropathy via hematopoietic-neuronal cell fusion.
    Terashima T; Kojima H; Chan L
    FASEB J; 2012 Jan; 26(1):295-308. PubMed ID: 21978940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy.
    Negi G; Kumar A; Sharma SS
    Biochem Biophys Res Commun; 2010 Jan; 391(1):102-6. PubMed ID: 19900402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of ranirestat for the treatment of diabetic neuropathy.
    Giannoukakis N
    Expert Opin Drug Metab Toxicol; 2014 Jul; 10(7):1051-9. PubMed ID: 24785785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current options and perspectives in the treatment of diabetic neuropathy.
    Várkonyi T; Putz Z; Keresztes K; Martos T; Lengyel C; Stirban A; Jermendy G; Kempler P
    Curr Pharm Des; 2013; 19(27):4981-5007. PubMed ID: 23278494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous inhibition of excessive polyol pathway flux in peripheral nerves by aldose reductase inhibitor fidarestat leads to improvement of diabetic neuropathy.
    Mizuno K; Kato N; Makino M; Suzuki T; Shindo M
    J Diabetes Complications; 1999; 13(3):141-50. PubMed ID: 10509874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetic neuropathy: an intensive review.
    Duby JJ; Campbell RK; Setter SM; White JR; Rasmussen KA
    Am J Health Syst Pharm; 2004 Jan; 61(2):160-73; quiz 175-6. PubMed ID: 14750401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic neuropathy: therapies on the horizon.
    Mahmood D; Singh BK; Akhtar M
    J Pharm Pharmacol; 2009 Sep; 61(9):1137-45. PubMed ID: 19703362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy.
    Figueroa-Romero C; Sadidi M; Feldman EL
    Rev Endocr Metab Disord; 2008 Dec; 9(4):301-14. PubMed ID: 18709457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of advanced glycation end products in diabetic neuropathy.
    Sugimoto K; Yasujima M; Yagihashi S
    Curr Pharm Des; 2008; 14(10):953-61. PubMed ID: 18473845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress and dysregulation of the taurine transporter in high-glucose-exposed human Schwann cells: implications for pathogenesis of diabetic neuropathy.
    Askwith T; Zeng W; Eggo MC; Stevens MJ
    Am J Physiol Endocrinol Metab; 2009 Sep; 297(3):E620-8. PubMed ID: 19602579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aldose reductase / polyol inhibitors for diabetic retinopathy.
    Obrosova IG; Kador PF
    Curr Pharm Biotechnol; 2011 Mar; 12(3):373-85. PubMed ID: 20939801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications.
    Obrosova IG; Pacher P; Szabó C; Zsengeller Z; Hirooka H; Stevens MJ; Yorek MA
    Diabetes; 2005 Jan; 54(1):234-42. PubMed ID: 15616034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New treatments for diabetic neuropathy: pathogenetically oriented treatment.
    Bierhaus A; Humpert PM; Rudofsky G; Wendt T; Morcos M; Hamann A; Nawroth PP
    Curr Diab Rep; 2003 Dec; 3(6):452-8. PubMed ID: 14611740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.