These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 23738033)

  • 21. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis.
    Sadeghiyan Galeshkalami N; Abdollahi M; Najafi R; Baeeri M; Jamshidzade A; Falak R; Davoodzadeh Gholami M; Hassanzadeh G; Mokhtari T; Hassani S; Rahimifard M; Hosseini A
    Life Sci; 2019 Jan; 216():101-110. PubMed ID: 30393023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights on oxidative stress and diabetic complications may lead to a "causal" antioxidant therapy.
    Ceriello A
    Diabetes Care; 2003 May; 26(5):1589-96. PubMed ID: 12716823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of miR-25 aggravates diabetic peripheral neuropathy.
    Zhang Y; Song C; Liu J; Bi Y; Li H
    Neuroreport; 2018 Aug; 29(11):945-953. PubMed ID: 29877948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional and biochemical evidence indicating beneficial effect of Melatonin and Nicotinamide alone and in combination in experimental diabetic neuropathy.
    Negi G; Kumar A; Kaundal RK; Gulati A; Sharma SS
    Neuropharmacology; 2010 Mar; 58(3):585-92. PubMed ID: 20005237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How does glucose generate oxidative stress in peripheral nerve?
    Obrosova IG
    Int Rev Neurobiol; 2002; 50():3-35. PubMed ID: 12198815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repurposing the aldose reductase inhibitor and diabetic neuropathy drug epalrestat for the congenital disorder of glycosylation PMM2-CDG.
    Iyer S; Sam FS; DiPrimio N; Preston G; Verheijen J; Murthy K; Parton Z; Tsang H; Lao J; Morava E; Perlstein EO
    Dis Model Mech; 2019 Nov; 12(11):. PubMed ID: 31636082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Exploration on the relationship between diabetic peripheral neuropathy and oxidative stress QU ling and].
    Qu L; Liang XC
    Zhongguo Zhong Xi Yi Jie He Za Zhi; 2007 Aug; 27(8):764-8. PubMed ID: 17879547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative therapeutic principles in the prevention of microvascular and neuropathic complications.
    Gries FA
    Diabetes Res Clin Pract; 1995 Aug; 28 Suppl():S201-7. PubMed ID: 8529515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role for poly(ADP-ribose) polymerase activation in diabetic nephropathy, neuropathy and retinopathy.
    Obrosova IG; Julius UA
    Curr Vasc Pharmacol; 2005 Jul; 3(3):267-83. PubMed ID: 16026323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of orally active poly(ADP-ribose) polymerase inhibitor in streptozotocin-diabetic rat model of early peripheral neuropathy.
    Li F; Szabó C; Pacher P; Southan GJ; Abatan OI; Charniauskaya T; Stevens MJ; Obrosova IG
    Diabetologia; 2004 Apr; 47(4):710-7. PubMed ID: 15298348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management.
    Tang G; Li S; Zhang C; Chen H; Wang N; Feng Y
    Acta Pharm Sin B; 2021 Sep; 11(9):2749-2767. PubMed ID: 34589395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathogenesis of diabetic neuropathy: focus on neurovascular mechanisms.
    Van Dam PS; Cotter MA; Bravenboer B; Cameron NE
    Eur J Pharmacol; 2013 Nov; 719(1-3):180-186. PubMed ID: 23872412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Burning through the pain: treatments for diabetic neuropathy.
    Javed S; Alam U; Malik RA
    Diabetes Obes Metab; 2015 Dec; 17(12):1115-25. PubMed ID: 26179288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aldose Reductase as a Drug Target for Treatment of Diabetic Nephropathy: Promises and Challenges.
    ElGamal H; Munusamy S
    Protein Pept Lett; 2017; 24(1):71-77. PubMed ID: 27894247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucotoxic Mechanisms and Related Therapeutic Approaches.
    Yagihashi S
    Int Rev Neurobiol; 2016; 127():121-49. PubMed ID: 27133148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress and diabetic neuropathy: pathophysiological mechanisms and treatment perspectives.
    van Dam PS
    Diabetes Metab Res Rev; 2002; 18(3):176-84. PubMed ID: 12112935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diabetic Neuropathy: Update on Pathophysiological Mechanism and the Possible Involvement of Glutamate Pathways.
    Hussain N; Adrian TE
    Curr Diabetes Rev; 2017; 13(5):488-497. PubMed ID: 27341846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pathogenesis of diabetic complications: the role of DNA injury and poly(ADP-ribose) polymerase activation in peroxynitrite-mediated cytotoxicity.
    Kiss L; Szabó C
    Mem Inst Oswaldo Cruz; 2005 Mar; 100 Suppl 1():29-37. PubMed ID: 15962096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets.
    Dewanjee S; Das S; Das AK; Bhattacharjee N; Dihingia A; Dua TK; Kalita J; Manna P
    Eur J Pharmacol; 2018 Aug; 833():472-523. PubMed ID: 29966615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway.
    Li QR; Wang Z; Zhou W; Fan SR; Ma R; Xue L; Yang L; Li YS; Tan HL; Shao QH; Yang HY
    Neural Regen Res; 2016 Feb; 11(2):345-51. PubMed ID: 27073391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.