These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 23738498)

  • 41. In Situ Photocatalytically Heterostructured ZnO-Ag Nanoparticle Composites as Effective Cathode-Modifying Layers for Air-Processed Polymer Solar Cells.
    Yuan K; Chen L; Chen Y
    Chemistry; 2015 Aug; 21(33):11899-906. PubMed ID: 26135916
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interface passivation and electron transport improvement via employing calcium fluoride for polymer solar cells.
    Tang Y; Pang Y; Li X; Zong B; Kang B; Silva SRP; Lu G
    J Colloid Interface Sci; 2020 Mar; 562():142-148. PubMed ID: 31838350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Dual Cathode Buffer Layer on the Charge Carrier Dynamics of rrP3HT:PCBM Based Bulk Heterojunction Solar Cell.
    Singh A; Dey A; Das D; Iyer PK
    ACS Appl Mater Interfaces; 2016 May; 8(17):10904-10. PubMed ID: 27075007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3-Dimensional ZnO/CdS nanocomposite with high mobility as an efficient electron transport layer for inverted polymer solar cells.
    Wang Y; Fu H; Wang Y; Tan L; Chen L; Chen Y
    Phys Chem Chem Phys; 2016 Apr; 18(17):12175-82. PubMed ID: 27074904
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diketopyrrolopyrrole-based π-bridged donor-acceptor polymer for photovoltaic applications.
    Li W; Lee T; Oh SJ; Kagan CR
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3874-83. PubMed ID: 21888419
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solution-processed flexible polymer solar cells with silver nanowire electrodes.
    Yang L; Zhang T; Zhou H; Price SC; Wiley BJ; You W
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4075-84. PubMed ID: 21899278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer.
    Ambade SB; Ambade RB; Kim S; Park H; Yoo DJ; Leel SH
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8561-6. PubMed ID: 25958563
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.
    Li P; Jiu T; Tang G; Wang G; Li J; Li X; Fang J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18172-9. PubMed ID: 25269149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly stable and efficient cathode-buffer-layer-free inverted perovskite solar cells.
    Kim YR; Oh CM; Yoon CJ; Kim JH; Park K; Lee K; Hwang IW; Kim H
    Nanoscale; 2021 Mar; 13(11):5652-5659. PubMed ID: 33710224
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of the ionic functionalities of polyfluorene derivatives as a cathode interfacial layer on inverted polymer solar cells.
    Kang R; Oh SH; Kim DY
    ACS Appl Mater Interfaces; 2014 May; 6(9):6227-36. PubMed ID: 24650233
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell.
    Guo J; Liang Y; Szarko J; Lee B; Son HJ; Rolczynski BS; Yu L; Chen LX
    J Phys Chem B; 2010 Jan; 114(2):742-8. PubMed ID: 20038154
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.
    Hsu CL; Lin CT; Huang JH; Chu CW; Wei KH; Li LJ
    ACS Nano; 2012 Jun; 6(6):5031-9. PubMed ID: 22632158
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Power-Conversion Efficiency in Inverted Bulk Heterojunction Solar Cells using Liquid-Crystal-Conjugated Polyelectrolyte Interlayer.
    Liu C; Tan Y; Li C; Wu F; Chen L; Chen Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(34):19024-33. PubMed ID: 26280810
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ZnO and conjugated polymer bulk heterojunction solar cells containing ZnO nanorod photoanode.
    Lee TH; Sue HJ; Cheng X
    Nanotechnology; 2011 Jul; 22(28):285401. PubMed ID: 21625040
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy.
    Kuwabara T; Kawahara Y; Yamaguchi T; Takahashi K
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2107-10. PubMed ID: 20355841
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells.
    Wei HY; Huang JH; Ho KC; Chu CW
    ACS Appl Mater Interfaces; 2010 May; 2(5):1281-5. PubMed ID: 20450193
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly(3-hexylthiophene): fullerene derivative solar cells.
    Shao S; Liu J; Zhang J; Zhang B; Xie Z; Geng Y; Wang L
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5704-10. PubMed ID: 23027773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode.
    Yim JH; Joe SY; Pang C; Lee KM; Jeong H; Park JY; Ahn YH; de Mello JC; Lee S
    ACS Nano; 2014 Mar; 8(3):2857-63. PubMed ID: 24533638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydroxyl-Terminated CuInS
    Chen H; Chao P; Han D; Wang H; Miao J; Zhong H; Meng H; He F
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7362-7367. PubMed ID: 28194942
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient "light-soaking"-free inverted organic solar cells with aqueous solution processed low-temperature ZnO electron extraction layers.
    Wei W; Zhang C; Chen D; Wang Z; Zhu C; Zhang J; Lu X; Hao Y
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13318-24. PubMed ID: 24308270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.