BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23738692)

  • 21. The Role of Intracellular Signaling Pathways in the Pathogenesis of Multiple Myeloma and Novel Therapeutic Approaches.
    Kizaki M; Tabayashi T
    J Clin Exp Hematop; 2016; 56(1):20-7. PubMed ID: 27334854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Various Signaling Pathways in Multiple Myeloma Cells and Effects of Treatment on These Pathways.
    Dehghanifard A; Kaviani S; Abroun S; Mehdizadeh M; Saiedi S; Maali A; Ghaffari S; Azad M
    Clin Lymphoma Myeloma Leuk; 2018 May; 18(5):311-320. PubMed ID: 29606369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New horizons in multiple myeloma therapy.
    Santos ES; Kharfan-Dabaja MA
    Expert Rev Anticancer Ther; 2006 Oct; 6(10):1483-501. PubMed ID: 17069532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging protein kinase inhibitors for the treatment of multiple myeloma.
    Lind J; Czernilofsky F; Vallet S; Podar K
    Expert Opin Emerg Drugs; 2019 Sep; 24(3):133-152. PubMed ID: 31327278
    [No Abstract]   [Full Text] [Related]  

  • 25. Molecular mechanisms of novel therapeutic approaches for multiple myeloma.
    Hideshima T; Anderson KC
    Nat Rev Cancer; 2002 Dec; 2(12):927-37. PubMed ID: 12459731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted therapy of hepatocellular cancer.
    Wysocki PJ
    Expert Opin Investig Drugs; 2010 Feb; 19(2):265-74. PubMed ID: 20074016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insights, recent advances, and current challenges in the biological treatment of multiple myeloma.
    Vallet S; Podar K
    Expert Opin Biol Ther; 2013 Jun; 13 Suppl 1():S35-53. PubMed ID: 23768134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined targeting of MEK/MAPK and PI3K/Akt signalling in multiple myeloma.
    Steinbrunn T; Stühmer T; Sayehli C; Chatterjee M; Einsele H; Bargou RC
    Br J Haematol; 2012 Nov; 159(4):430-40. PubMed ID: 22985491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA interference for multiple myeloma therapy: targeting signal transduction pathways.
    Guo J; McKenna SL; O'Dwyer ME; Cahill MR; O'Driscoll CM
    Expert Opin Ther Targets; 2016; 20(1):107-21. PubMed ID: 26190583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of p38alpha mitogen-activated protein kinase prevents the development of osteolytic bone disease, reduces tumor burden, and increases survival in murine models of multiple myeloma.
    Vanderkerken K; Medicherla S; Coulton L; De Raeve H; Willems A; Lawson M; Van Camp B; Protter AA; Higgins LS; Menu E; Croucher PI
    Cancer Res; 2007 May; 67(10):4572-7. PubMed ID: 17495322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions.
    Anderson KC
    Exp Hematol; 2007 Apr; 35(4 Suppl 1):155-62. PubMed ID: 17379101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of apoptosis in human multiple myeloma by insulin-like growth factor I (IGF-I).
    Jernberg-Wiklund H; Nilsson K
    Adv Cancer Res; 2007; 97():139-65. PubMed ID: 17419944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promises and challenges of MicroRNA-based treatment of multiple myeloma.
    Tagliaferri P; Rossi M; Di Martino MT; Amodio N; Leone E; Gulla A; Neri A; Tassone P
    Curr Cancer Drug Targets; 2012 Sep; 12(7):838-46. PubMed ID: 22671926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235.
    McMillin DW; Ooi M; Delmore J; Negri J; Hayden P; Mitsiades N; Jakubikova J; Maira SM; Garcia-Echeverria C; Schlossman R; Munshi NC; Richardson PG; Anderson KC; Mitsiades CS
    Cancer Res; 2009 Jul; 69(14):5835-42. PubMed ID: 19584292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel therapeutic targets for multiple myeloma.
    Mahindra A; Cirstea D; Raje N
    Future Oncol; 2010 Mar; 6(3):407-18. PubMed ID: 20222797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways.
    Kobayashi T; Kuroda J; Ashihara E; Oomizu S; Terui Y; Taniyama A; Adachi S; Takagi T; Yamamoto M; Sasaki N; Horiike S; Hatake K; Yamauchi A; Hirashima M; Taniwaki M
    Leukemia; 2010 Apr; 24(4):843-50. PubMed ID: 20200560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting the insulin-like growth factor signaling pathway: figitumumab and other novel anticancer strategies.
    Yap TA; Olmos D; Molife LR; de Bono JS
    Expert Opin Investig Drugs; 2011 Sep; 20(9):1293-304. PubMed ID: 21777167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drug insight: thalidomide as a treatment for multiple myeloma.
    Kumar S; Anderson KC
    Nat Clin Pract Oncol; 2005 May; 2(5):262-70. PubMed ID: 16264962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Panobinostat for the treatment of multiple myeloma.
    Neri P; Bahlis NJ; Lonial S
    Expert Opin Investig Drugs; 2012 May; 21(5):733-47. PubMed ID: 22404247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective elimination of leukemia stem cells: hitting a moving target.
    Crews LA; Jamieson CH
    Cancer Lett; 2013 Sep; 338(1):15-22. PubMed ID: 22906415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.