BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23738695)

  • 1. Comparative analysis of mathematical models of cell death and thermal damage processes.
    Pearce JA
    Int J Hyperthermia; 2013 Jun; 29(4):262-80. PubMed ID: 23738695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.
    Pearce JA
    J Biomech Eng; 2015 Dec; 137(12):121006. PubMed ID: 26501738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical models of laser-induced tissue thermal damage.
    Pearce J
    Int J Hyperthermia; 2011; 27(8):741-50. PubMed ID: 22098359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal therapy in urologic systems: a comparison of arrhenius and thermal isoeffective dose models in predicting hyperthermic injury.
    He X; Bhowmick S; Bischof JC
    J Biomech Eng; 2009 Jul; 131(7):074507. PubMed ID: 19640143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental investigation and histopathological identification of acute thermal damage in skeletal porcine muscle in relation to whole-body SAR, maximum temperature, and CEM43 °C due to RF irradiation in an MR body coil of birdcage type at 123 MHz.
    Nadobny J; Klopfleisch R; Brinker G; Stoltenburg-Didinger G
    Int J Hyperthermia; 2015 Jun; 31(4):409-20. PubMed ID: 25716768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells.
    Bhowmick S; Swanlund DJ; Bischof JC
    J Biomech Eng; 2000 Feb; 122(1):51-9. PubMed ID: 10790830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia.
    Dewhirst MW; Viglianti BL; Lora-Michiels M; Hanson M; Hoopes PJ
    Int J Hyperthermia; 2003; 19(3):267-94. PubMed ID: 12745972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Relationship between thermal dose and cell death for "rapid" ablative and "slow" hyperthermic heating'.
    Mouratidis PXE; Rivens I; Civale J; Symonds-Tayler R; Ter Haar G
    Int J Hyperthermia; 2019; 36(1):229-243. PubMed ID: 30700171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring?
    van Rhoon GC
    Int J Hyperthermia; 2016; 32(1):50-62. PubMed ID: 26758036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: feasibility studies.
    Franco W; Kothare A; Ronan SJ; Grekin RC; McCalmont TH
    Lasers Surg Med; 2010 Jul; 42(5):361-70. PubMed ID: 20583242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of thermal dose in moderate clinical hyperthermia with radiotherapy: a relook using temperature-time area under the curve (AUC).
    Datta NR; Marder D; Datta S; Meister A; Puric E; Stutz E; Rogers S; Eberle B; Timm O; Staruch M; Riesterer O; Bodis S
    Int J Hyperthermia; 2021; 38(1):296-307. PubMed ID: 33627018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new thermal dose model based on Vogel-Tammann-Fulcher behaviour in thermal damage processes.
    Assi HTI; Arsenault MG; Whelan WM; Kumaradas JC
    Int J Hyperthermia; 2022; 39(1):697-705. PubMed ID: 35469518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal treatment parameters are most predictive of outcome in patients with single tumor nodules per treatment field in recurrent adenocarcinoma of the breast.
    Kapp DS; Cox RS
    Int J Radiat Oncol Biol Phys; 1995 Nov; 33(4):887-99. PubMed ID: 7591899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rationalization of thermal injury quantification methods: application to skin burns.
    Viglianti BL; Dewhirst MW; Abraham JP; Gorman JM; Sparrow EM
    Burns; 2014 Aug; 40(5):896-902. PubMed ID: 24418648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments.
    Gayzik FS; Scott EP; Loulou T
    J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro assessment of the efficacy of thermal therapy in human renal cell carcinoma.
    Walsh LP; Anderson JK; Baker MR; Han B; Hsieh JT; Lotan Y; Cadeddu JA
    Urology; 2007 Aug; 70(2):380-4. PubMed ID: 17826524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endovascular nonthermal irreversible electroporation: a finite element analysis.
    Maor E; Rubinsky B
    J Biomech Eng; 2010 Mar; 132(3):031008. PubMed ID: 20459196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model.
    He X; McGee S; Coad JE; Schmidlin F; Iaizzo PA; Swanlund DJ; Kluge S; Rudie E; Bischof JC
    Int J Hyperthermia; 2004 Sep; 20(6):567-93. PubMed ID: 15370815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Esophagus histological analysis after hyperthermia-induced injury: implications for cardiac ablation.
    Lequerica JL; Sanz E; Hornero F; Herrero M; Ruiz N; Burdio F; Berjano EJ
    Int J Hyperthermia; 2009 Mar; 25(2):150-9. PubMed ID: 19337915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.