BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 23738698)

  • 1. Computational modelling of microwave tumour ablations.
    Chiang J; Wang P; Brace CL
    Int J Hyperthermia; 2013 Jun; 29(4):308-17. PubMed ID: 23738698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of microwave antennas for thermal therapy.
    Ito K; Saito K
    Curr Pharm Des; 2011; 17(22):2360-6. PubMed ID: 21736543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and validation of microwave ablations with internal vaporization.
    Chiang J; Birla S; Bedoya M; Jones D; Subbiah J; Brace CL
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):657-63. PubMed ID: 25330481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method.
    Kumaradas JC; Sherar MD
    Phys Med Biol; 2003 Jan; 48(1):1-18. PubMed ID: 12564497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac tissue ablation with catheter-based microwave heating.
    Rappaport C
    Int J Hyperthermia; 2004 Nov; 20(7):769-80. PubMed ID: 15675671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment planning in microwave thermal ablation: clinical gaps and recent research advances.
    Lopresto V; Pinto R; Farina L; Cavagnaro M
    Int J Hyperthermia; 2017 Feb; 33(1):83-100. PubMed ID: 27431328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal characteristics of microwave ablation in the vicinity of an arterial bifurcation.
    Liu YJ; Qiao AK; Nan Q; Yang XY
    Int J Hyperthermia; 2006 Sep; 22(6):491-506. PubMed ID: 16971369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compact microwave patch applicator for hyperthermia treatment of cancer.
    Chakaravarthi G; Arunachalam K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5320-2. PubMed ID: 25571195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of high dielectric material for the treatment of liver cancer through microwave heating.
    Bhandari A; Kuchhal P
    J Med Eng Technol; 2019 Apr; 43(3):165-172. PubMed ID: 31313608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave ablation in primary and secondary liver tumours: technical and clinical approaches.
    Meloni MF; Chiang J; Laeseke PF; Dietrich CF; Sannino A; Solbiati M; Nocerino E; Brace CL; Lee FT
    Int J Hyperthermia; 2017 Feb; 33(1):15-24. PubMed ID: 27416729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent dielectric properties of liver tissue measured during thermal ablation: toward an improved numerical model.
    Brace CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():230-3. PubMed ID: 19162635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance.
    Ryan TP; Brace CL
    Int J Hyperthermia; 2017 Feb; 33(1):3-14. PubMed ID: 27492859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of the effect of blood vessel on the microwave ablation shape.
    Nie X; Nan Q; Guo X; Tian Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S265-70. PubMed ID: 26406011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D computational study of non-invasive patient-specific microwave hyperthermia treatment of breast cancer.
    Zastrow E; Hagness SC; Van Veen BD
    Phys Med Biol; 2010 Jul; 55(13):3611-29. PubMed ID: 20526033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation for local temperature control during microwave-induced hyperthermia.
    De Wagter C
    J Microw Power Electromagn Energy; 1985; 20(1):31-42. PubMed ID: 3847505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model.
    He X; McGee S; Coad JE; Schmidlin F; Iaizzo PA; Swanlund DJ; Kluge S; Rudie E; Bischof JC
    Int J Hyperthermia; 2004 Sep; 20(6):567-93. PubMed ID: 15370815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation-based design and characterization of a microwave applicator for MR-guided hyperthermia experimental studies in small animals.
    Faridi P; Bossmann SH; Prakash P
    Biomed Phys Eng Express; 2020 Jan; 6(1):. PubMed ID: 32999735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstitial microwave transition from hyperthermia to ablation: historical perspectives and current trends in thermal therapy.
    Ryan TP; Turner PF; Hamilton B
    Int J Hyperthermia; 2010; 26(5):415-33. PubMed ID: 20597625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [State of the art and prospects on the use of radiofrequency and microwave hyperthermia in cancer treatment (author's transl)].
    Gautherie M
    J Radiol; 1979 Nov; 60(11):685-9. PubMed ID: 529220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical evaluation of 430 MHz microwave hyperthermia system with lens applicator for cancer therapy.
    Hiraoka M; Nishimura Y; Masunaga S; Koishi M; Mitsumori M; Li YP; Nagata Y; Akuta K; Takahashi M; Abe M
    Med Biol Eng Comput; 1995 Jan; 33(1):44-7. PubMed ID: 7616780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.