These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 23738698)

  • 41. Computational modeling of microwave ablation with thermal accelerants.
    Sebek J; Park WKC; Geimer S; Van Citters DW; Farah A; Dupuy DE; Meaney PM; Prakash P
    Int J Hyperthermia; 2023; 40(1):2255755. PubMed ID: 37710404
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microwave oncologic hyperthermia combined with radiotherapy and controlled by microwave radiometry.
    Giaux G; Chivé M
    Recent Results Cancer Res; 1986; 101():75-87. PubMed ID: 3952363
    [No Abstract]   [Full Text] [Related]  

  • 43. Radiofrequency, microwave and laser ablation of pulmonary neoplasms: clinical studies and technical considerations--review article.
    Vogl TJ; Naguib NN; Lehnert T; Nour-Eldin NE
    Eur J Radiol; 2011 Feb; 77(2):346-57. PubMed ID: 19700254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal therapy, Part III: ablation techniques.
    Habash RW; Bansal R; Krewski D; Alhafid HT
    Crit Rev Biomed Eng; 2007; 35(1-2):37-121. PubMed ID: 17956222
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose.
    Liu D; Brace CL
    Phys Med Biol; 2017 Mar; 62(6):2070-2086. PubMed ID: 28151729
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Target visualisation and microwave hyperthermia monitoring using nanoparticle-enhanced transmission ultrasound (NETUS).
    Perlman O; Weitz IS; Azhari H
    Int J Hyperthermia; 2018 Sep; 34(6):773-785. PubMed ID: 29063825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced Microwave Hyperthermia of Cancer Cells with Fullerene.
    Sun M; Kiourti A; Wang H; Zhao S; Zhao G; Lu X; Volakis JL; He X
    Mol Pharm; 2016 Jul; 13(7):2184-92. PubMed ID: 27195904
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Edge-element based finite element analysis of microwave hyperthermia treatments for superficial tumours on the chest wall.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2003; 19(4):414-30. PubMed ID: 12850927
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal tumour ablation: devices, clinical applications and future directions.
    Haemmerich D; Laeseke PF
    Int J Hyperthermia; 2005 Dec; 21(8):755-60. PubMed ID: 16338858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Review of asian experience of thermal ablation techniques and clinical practice.
    Rhim H
    Int J Hyperthermia; 2004 Nov; 20(7):699-712. PubMed ID: 15675666
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computer controlled microwave system for clinical hyperthermia.
    Nilsson P; Persson B
    Phys Med Biol; 1985 Apr; 30(4):283-92. PubMed ID: 4001156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phantom experimental study on microwave ablation with a water-cooled antenna.
    Liu Y; Yang X; Nan Q; Xiao J; Li L
    Int J Hyperthermia; 2007 Jun; 23(4):381-6. PubMed ID: 17558737
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calculations of heating patterns of an array of microwave interstitial antennas.
    Cherry PC; Iskander MF
    IEEE Trans Biomed Eng; 1993 Aug; 40(8):771-9. PubMed ID: 8258443
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical and experimental analysis of air cooling for intracavitary microwave hyperthermia applicators.
    Yeh MM; Trembly BS; Douple EB; Ryan TP; Hoopes PJ; Jonsson E; Heaney JA
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):874-82. PubMed ID: 7959814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Limitations and significance of thermal washout data obtained during microwave and ultrasound hyperthermia.
    Newman WH; Lele PP; Bowman HF
    Int J Hyperthermia; 1990; 6(4):771-84. PubMed ID: 2394925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational feasibility of deformable mirror microwave hyperthermia technique for localized breast tumors.
    Arunachalam K; Udpa SS; Udpa L
    Int J Hyperthermia; 2007 Nov; 23(7):577-89. PubMed ID: 18038288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual mode microwave tool for dielectric analysis and thermal ablation treatment of organic tissue.
    Puentes M; Bashir F; Schüssler M; Jakoby R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4026-9. PubMed ID: 23366811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Experimental thermoradiotherapy of human tumour xenografts in nude mice; design of the hyperthermia system.
    Bruggmoser G; Hinkelbein W; Saum R
    Int J Hyperthermia; 1992; 8(5):631-43. PubMed ID: 1402140
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model.
    Bedoya M; del Rio AM; Chiang J; Brace CL
    Med Phys; 2014 Dec; 41(12):123301. PubMed ID: 25471983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.