These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 23738987)
1. An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater. Van Stempvoort DR; Roy JW; Grabuski J; Brown SJ; Bickerton G; Sverko E Sci Total Environ; 2013 Sep; 461-462():348-59. PubMed ID: 23738987 [TBL] [Abstract][Full Text] [Related]
2. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks. Wolf L; Zwiener C; Zemann M Sci Total Environ; 2012 Jul; 430():8-19. PubMed ID: 22609959 [TBL] [Abstract][Full Text] [Related]
3. Contaminants of Emerging Concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas. McCance W; Jones OAH; Edwards M; Surapaneni A; Chadalavada S; Currell M Water Res; 2018 Dec; 146():118-133. PubMed ID: 30241045 [TBL] [Abstract][Full Text] [Related]
4. Artificial sweeteners as potential tracers of municipal landfill leachate. Roy JW; Van Stempvoort DR; Bickerton G Environ Pollut; 2014 Jan; 184():89-93. PubMed ID: 24041482 [TBL] [Abstract][Full Text] [Related]
5. Use of an Artificial Sweetener to Identify Sources of Groundwater Nitrate Contamination. Robertson WD; Van Stempvoort DR; Roy JW; Brown SJ; Spoelstra J; Schiff SL; Rudolph DR; Danielescu S; Graham G Ground Water; 2016 Jul; 54(4):579-87. PubMed ID: 26729010 [TBL] [Abstract][Full Text] [Related]
6. Degradation of sucralose in groundwater and implications for age dating contaminated groundwater. Robertson WD; Van Stempvoort DR; Spoelstra J; Brown SJ; Schiff SL Water Res; 2016 Jan; 88():653-660. PubMed ID: 26575474 [TBL] [Abstract][Full Text] [Related]
7. Variable persistence of artificial sweeteners during wastewater treatment: Implications for future use as tracers. Van Stempvoort DR; Brown SJ; Spoelstra J; Garda D; Robertson WD; Smyth SA Water Res; 2020 Oct; 184():116124. PubMed ID: 32755735 [TBL] [Abstract][Full Text] [Related]
8. Chemical and biological tracers to identify source and transport pathways of septic system contamination to streams in areas with low permeability soils. Digaletos M; Ptacek CJ; Thomas J; Liu Y Sci Total Environ; 2023 Apr; 870():161866. PubMed ID: 36709906 [TBL] [Abstract][Full Text] [Related]
9. Long-term impact of wastewater effluent discharge on groundwater: Identification of contaminant plume by geochemical, isotopic, and organic tracers' approach. Bonnière A; Khaska S; Le Gal La Salle C; Louvat P; Verdoux P Water Res; 2024 Jun; 257():121637. PubMed ID: 38701551 [TBL] [Abstract][Full Text] [Related]
10. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. Yang YY; Zhao JL; Liu YS; Liu WR; Zhang QQ; Yao L; Hu LX; Zhang JN; Jiang YX; Ying GG Sci Total Environ; 2018 Mar; 616-617():816-823. PubMed ID: 29089128 [TBL] [Abstract][Full Text] [Related]
11. Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Buerge IJ; Buser HR; Kahle M; Müller MD; Poiger T Environ Sci Technol; 2009 Jun; 43(12):4381-5. PubMed ID: 19603650 [TBL] [Abstract][Full Text] [Related]
12. Mass balance of emerging contaminants in the water cycle of a highly urbanized and industrialized area of Italy. Castiglioni S; Davoli E; Riva F; Palmiotto M; Camporini P; Manenti A; Zuccato E Water Res; 2018 Mar; 131():287-298. PubMed ID: 29306200 [TBL] [Abstract][Full Text] [Related]
13. Estimating cumulative wastewater treatment plant discharge influences on acesulfame and Escherichia coli in a highly impacted watershed with a fully-integrated modelling approach. Hwang HT; Frey SK; Park YJ; Pintar KDM; Lapen DR; Thomas JL; Spoelstra J; Schiff SL; Brown SJ; Sudicky EA Water Res; 2019 Jun; 157():647-662. PubMed ID: 31004980 [TBL] [Abstract][Full Text] [Related]
14. Applicability of geochemical techniques and artificial sweeteners in discriminating the anthropogenic sources of chloride in shallow groundwater north of Toronto, Canada. Khazaei E; Milne-Home W Environ Monit Assess; 2017 May; 189(5):218. PubMed ID: 28412769 [TBL] [Abstract][Full Text] [Related]
15. Sources of aminomethylphosphonic acid (AMPA) in urban and rural catchments in Ontario, Canada: Glyphosate or phosphonates in wastewater? Struger J; Van Stempvoort DR; Brown SJ Environ Pollut; 2015 Sep; 204():289-97. PubMed ID: 26187493 [TBL] [Abstract][Full Text] [Related]
16. Wastewater contaminants in a fractured bedrock aquifer and their potential use as enteric virus indicators. Race AS; Spoelstra J; Parker BL Appl Environ Microbiol; 2024 Feb; 90(2):e0121323. PubMed ID: 38231263 [TBL] [Abstract][Full Text] [Related]
17. Artificial sweeteners in a large Canadian river reflect human consumption in the watershed. Spoelstra J; Schiff SL; Brown SJ PLoS One; 2013; 8(12):e82706. PubMed ID: 24349342 [TBL] [Abstract][Full Text] [Related]
18. Residues of the herbicide glyphosate in riparian groundwater in urban catchments. Van Stempvoort DR; Roy JW; Brown SJ; Bickerton G Chemosphere; 2014 Jan; 95():455-63. PubMed ID: 24206835 [TBL] [Abstract][Full Text] [Related]
19. Acesulfame allows the tracing of multiple sources of wastewater and riverbank filtration. Marazuela MA; Formentin G; Erlmeier K; Hofmann T Environ Pollut; 2023 Apr; 323():121223. PubMed ID: 36754203 [TBL] [Abstract][Full Text] [Related]
20. Seasonal biodegradation of the artificial sweetener acesulfame enhances its use as a transient wastewater tracer. Marazuela MA; Formentin G; Erlmeier K; Hofmann T Water Res; 2023 Apr; 232():119670. PubMed ID: 36731204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]