These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 23739231)
1. Subcutaneous interstitial pressure and volume characteristics in renal impairment associated with edema. Ebah LM; Wiig H; Dawidowska I; O'Toole C; Summers A; Nikam M; Jayanti A; Coupes B; Brenchley P; Mitra S Kidney Int; 2013 Nov; 84(5):980-8. PubMed ID: 23739231 [TBL] [Abstract][Full Text] [Related]
2. Interstitial fluid homeostasis and pressure: news from the black box. Titze J Kidney Int; 2013 Nov; 84(5):869-71. PubMed ID: 24172732 [TBL] [Abstract][Full Text] [Related]
3. Extracellular Fluid Excess Is Significantly Associated With Coronary Artery Calcification in Patients With Chronic Kidney Disease. Park S; Lee CJ; Jhee JH; Yun HR; Kim H; Jung SY; Kee YK; Yoon CY; Park JT; Kim HC; Han SH; Kang SW; Park S; Yoo TH J Am Heart Assoc; 2018 Jun; 7(13):. PubMed ID: 29960990 [TBL] [Abstract][Full Text] [Related]
4. Early detection of subclinical edema in chronic kidney disease patients by bioelectrical impedance analysis. Thanakitcharu P; Jirajan B J Med Assoc Thai; 2014 Nov; 97 Suppl 11():S1-10. PubMed ID: 25509689 [TBL] [Abstract][Full Text] [Related]
5. Assessment of body composition using dry mass index and ratio of total body water to estimated volume based on bioelectrical impedance analysis in chronic kidney disease patients. Ohashi Y; Otani T; Tai R; Tanaka Y; Sakai K; Aikawa A J Ren Nutr; 2013 Jan; 23(1):28-36. PubMed ID: 22406124 [TBL] [Abstract][Full Text] [Related]
6. Extracellular resistance is sensitive to tissue sodium status; implications for bioimpedance-derived fluid volume parameters in chronic kidney disease. Mitsides N; McHugh D; Swiecicka A; Mitra R; Brenchley P; Parker GJM; Mitra S J Nephrol; 2020 Feb; 33(1):119-127. PubMed ID: 31214996 [TBL] [Abstract][Full Text] [Related]
7. Hydration of exercised standardbred racehorses assessed noninvasively using multi-frequency bioelectrical impedance analysis. Waller A; Lindinger MI Equine Vet J Suppl; 2006 Aug; (36):285-90. PubMed ID: 17402433 [TBL] [Abstract][Full Text] [Related]
8. Non-invasive assessment of intercompartmental fluid shifts in burn victims. Zdolsek HJ; Lindahl OA; Angquist KA; Sjöberg F Burns; 1998 May; 24(3):233-40. PubMed ID: 9677026 [TBL] [Abstract][Full Text] [Related]
9. Model study of the effects of interactions between systemic and peripheral circulation on interstitial fluid balance. Aletti F; Baselli G J Gravit Physiol; 2007 Jul; 14(1):P51-2. PubMed ID: 18372695 [TBL] [Abstract][Full Text] [Related]
10. Quantifying acute changes in volume and nutritional status during haemodialysis using bioimpedance analysis. Chua HR; Xiang L; Chow PY; Xu H; Shen L; Lee E; Teo BW Nephrology (Carlton); 2012 Nov; 17(8):695-702. PubMed ID: 22882488 [TBL] [Abstract][Full Text] [Related]
11. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies. Hung SC; Lai YS; Kuo KL; Tarng DC J Am Heart Assoc; 2015 May; 4(5):. PubMed ID: 25944876 [TBL] [Abstract][Full Text] [Related]
12. Association between ratio of measured extracellular volume to expected body fluid volume and renal outcomes in patients with chronic kidney disease: a retrospective single-center cohort study. Tai R; Ohashi Y; Mizuiri S; Aikawa A; Sakai K BMC Nephrol; 2014 Dec; 15():189. PubMed ID: 25435421 [TBL] [Abstract][Full Text] [Related]
13. Associations of proteinuria, fluid volume imbalance, and body mass index with circadian ambulatory blood pressure in chronic kidney disease patients. Ohashi Y; Otani T; Tai R; Okada T; Tanaka K; Tanaka Y; Sakai K; Aikawa A Kidney Blood Press Res; 2012; 36(1):231-41. PubMed ID: 23154648 [TBL] [Abstract][Full Text] [Related]
14. Different pattern of fluid loss from the lower extremities in normohydrated and overhydrated stage 5 chronic-kidney-disease patients after haemodialysis. Lee SW; Park GH; Lee SW; Um WH; Kwon SH; Song JH; Kim MJ Nephrology (Carlton); 2008 Apr; 13(2):109-15. PubMed ID: 18275498 [TBL] [Abstract][Full Text] [Related]
15. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Jaffrin MY; Morel H Med Eng Phys; 2008 Dec; 30(10):1257-69. PubMed ID: 18676172 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of volume adaptation in the awake early pregnant rat. Verkeste CM; Slangen BF; Dubelaar ML; van Kreel BK; Peeters LL Am J Physiol; 1998 May; 274(5):H1662-6. PubMed ID: 9612377 [TBL] [Abstract][Full Text] [Related]
18. Identification of fluid overload in elderly patients with chronic kidney disease using bioimpedance techniques. Hussein U; Cimini M; Handelman GJ; Raimann JG; Liu L; Abbas SR; Kotanko P; Levin NW; Finkelstein FO; Zhu F J Appl Physiol (1985); 2022 Jul; 133(1):205-213. PubMed ID: 35652832 [TBL] [Abstract][Full Text] [Related]
19. Determination of body water compartments in neonatal foals by use of indicator dilution techniques and multifrequency bioelectrical impedance analysis. Fielding CL; Magdesian KG; Edman JE Am J Vet Res; 2011 Oct; 72(10):1390-6. PubMed ID: 21962283 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of bioimpedance spectroscopy for the measurement of body fluid compartment volumes in rats. Hu L; Maslanik T; Zerebeckyj M; Plato CF J Pharmacol Toxicol Methods; 2012 Mar; 65(2):75-82. PubMed ID: 22353670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]