These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23739376)

  • 61. A low cost, adaptive mixed reality system for home-based stroke rehabilitation.
    Chen Y; Baran M; Sundaram H; Rikakis T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1827-30. PubMed ID: 22254684
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Jerusalem TeleRehabilitation System, a new low-cost, haptic rehabilitation approach.
    Sugarman H; Dayan E; Weisel-Eichler A; Tiran J
    Cyberpsychol Behav; 2006 Apr; 9(2):178-82. PubMed ID: 16640475
    [TBL] [Abstract][Full Text] [Related]  

  • 63. From diagnostics to therapy--conceptual basis for real-time movement feedback in rehabilitation medicine.
    Schablowski-Trautmann M; Kögel M; Rupp R; Mikut R; Gerner HJ
    Biomed Tech (Berl); 2006 Dec; 51(5-6):299-304. PubMed ID: 17155864
    [TBL] [Abstract][Full Text] [Related]  

  • 64. An adaptive mixed reality training system for stroke rehabilitation.
    Duff M; Chen Y; Attygalle S; Herman J; Sundaram H; Qian G; He J; Rikakis T
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):531-41. PubMed ID: 20934938
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rehabilitation device with variable resistance and intelligent control.
    Dong S; Lu KQ; Sun JQ; Rudolph K
    Med Eng Phys; 2005 Apr; 27(3):249-55. PubMed ID: 15694609
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Technical feasibility of teleassessments for rehabilitation.
    Durfee WK; Savard L; Weinstein S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):23-9. PubMed ID: 17436872
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A mechatronic device for the rehabilitation of ankle motor function.
    Bucca G; Bezzolato A; Bruni S; Molteni F
    J Biomech Eng; 2009 Dec; 131(12):125001. PubMed ID: 20524738
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Modular transcutaneous functional electrical stimulation system.
    Popovic MR; Keller T
    Med Eng Phys; 2005 Jan; 27(1):81-92. PubMed ID: 15604009
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A robotic vehicle for disabled children. Providing assisted mobility with the PALMA project.
    Ceres R; Pons JL; Calderón L; Jiménez AR; Azevedo L
    IEEE Eng Med Biol Mag; 2005; 24(6):55-63. PubMed ID: 16382806
    [No Abstract]   [Full Text] [Related]  

  • 70. Virtual reality aided training of combined arm and leg movements of children with CP.
    Riener R; Dislaki E; Keller U; Koenig A; Van Hedel H; Nagle A
    Stud Health Technol Inform; 2013; 184():349-55. PubMed ID: 23400183
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Robotic personal aids for mobility and monitoring for the elderly.
    Spenko M; Yu H; Dubowsky S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):344-51. PubMed ID: 17009494
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tactile feedback display with spatial and temporal resolutions.
    Vishniakou S; Lewis BW; Niu X; Kargar A; Sun K; Kalajian M; Park N; Yang M; Jing Y; Brochu P; Sun Z; Li C; Nguyen T; Pei Q; Wang D
    Sci Rep; 2013; 3():2521. PubMed ID: 23982053
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluation of sensors for inputting data in exergames for the elderly.
    Hors-Fraile S; Browne J; Brox E; Evertsen G
    Stud Health Technol Inform; 2013; 192():935. PubMed ID: 23920709
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A 2-D motion detection model for low-cost embedded reconfigurable I/O devices.
    Dollas A; Sotiropoulos S; Papademetriou K
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1443-9. PubMed ID: 16119240
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Interactive resistance chair to promote strengthening exercise in older adults.
    Jeong IC; Finkelstein J
    Stud Health Technol Inform; 2015; 210():205-9. PubMed ID: 25991131
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Aging and technology in medical care: using the example of patient controllers in deep brain stimulation.
    Kaiser I; Oppenauer-Meerskraut C; Kryspin-Exner I; Czech T; Alesch F
    Expert Rev Med Devices; 2010 Nov; 7(6):759-66. PubMed ID: 21050087
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Restoring lost cognitive function.
    Berger TW; Ahuja A; Courellis SH; Deadwyler SA; Erinjippurath G; Gerhardt GA; Gholmieh G; Granacki JJ; Hampson R; Hsaio MC; LaCoss J; Marmarelis VZ; Nasiatka P; Srinivasan V; Song D; Tanguay AR; Wills J
    IEEE Eng Med Biol Mag; 2005; 24(5):30-44. PubMed ID: 16248115
    [No Abstract]   [Full Text] [Related]  

  • 78. A prototype rehabilitation device with variable resistance and joint motion control.
    Dong S; Lu KQ; Sun JQ; Rudolph K
    Med Eng Phys; 2006 May; 28(4):348-55. PubMed ID: 16112598
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Symmetry-based resistance as a novel means of lower limb rehabilitation.
    Simon AM; Brent Gillespie R; Ferris DP
    J Biomech; 2007; 40(6):1286-92. PubMed ID: 16843472
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Long-term hand tele-rehabilitation on the PlayStation 3: benefits and challenges.
    Burdea GC; Jain A; Rabin B; Pellosie R; Golomb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1835-8. PubMed ID: 22254686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.