These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23739484)

  • 21. Prioritisation of farm scale remediation efforts for reducing losses of nutrients and faecal indicator organisms to waterways: a case study of New Zealand dairy farming.
    Monaghan RM; de Klein CA; Muirhead RW
    J Environ Manage; 2008 Jun; 87(4):609-22. PubMed ID: 18164122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India.
    Pretty JN; Ball AS; Xiaoyun L; Ravindranath NH
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1741-61. PubMed ID: 12460495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Challenges and opportunities for quantifying greenhouse gas emissions through dairy cattle research in developing countries.
    Munidasa S; Eckard R; Sun X; Cullen B; McGill D; Chen D; Cheng L
    J Dairy Res; 2021 Feb; 88(1):3-7. PubMed ID: 33745462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors affecting methane production and mitigation in ruminants.
    Shibata M; Terada F
    Anim Sci J; 2010 Feb; 81(1):2-10. PubMed ID: 20163666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Agricultural opportunities to mitigate greenhouse gas emissions.
    Johnson JM; Franzluebbers AJ; Weyers SL; Reicosky DC
    Environ Pollut; 2007 Nov; 150(1):107-24. PubMed ID: 17706849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated analysis for a carbon- and water-constrained future: an assessment of drip irrigation in a lettuce production system in eastern Australia.
    Maraseni TN; Mushtaq S; Reardon-Smith K
    J Environ Manage; 2012 Nov; 111():220-6. PubMed ID: 22935628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years.
    Li C; Salas W; DeAngelo B; Rose S
    J Environ Qual; 2006; 35(4):1554-65. PubMed ID: 16825476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of productivity in improving the environmental sustainability of ruminant production systems.
    Capper JL; Bauman DE
    Annu Rev Anim Biosci; 2013 Jan; 1():469-89. PubMed ID: 25387028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.
    Dace E; Muizniece I; Blumberga A; Kaczala F
    Sci Total Environ; 2015 Sep; 527-528():80-90. PubMed ID: 25958357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cost-effective mitigation of greenhouse gas emissions from different dairy systems in the Waikato region of New Zealand.
    Adler AA; Doole GJ; Romera AJ; Beukes PC
    J Environ Manage; 2013 Dec; 131():33-43. PubMed ID: 24140485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cost-effectiveness analysis of policy instruments for greenhouse gas emission mitigation in the agricultural sector.
    Bakam I; Balana BB; Matthews R
    J Environ Manage; 2012 Dec; 112():33-44. PubMed ID: 22868381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of strain of Holstein-Friesian cow and feeding system on greenhouse gas emissions from pastoral dairy farms.
    O'Brien D; Shalloo L; Grainger C; Buckley F; Horan B; Wallace M
    J Dairy Sci; 2010 Jul; 93(7):3390-402. PubMed ID: 20630255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The carbon footprint of dairy production systems through partial life cycle assessment.
    Rotz CA; Montes F; Chianese DS
    J Dairy Sci; 2010 Mar; 93(3):1266-82. PubMed ID: 20172247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The greenhouse gas abatement potential of productivity improving measures applied to cattle systems in a developing region.
    Salmon GR; Marshall K; Tebug SF; Missohou A; Robinson TP; MacLeod M
    Animal; 2018 Apr; 12(4):844-852. PubMed ID: 28950919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategic environmental assessment of greenhouse gas mitigation options in the Canadian agricultural sector.
    Noble BF; Christmas LM
    Environ Manage; 2008 Jan; 41(1):64-78. PubMed ID: 17846827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Editorial: Greenhouse Gases and Animal Agriculture Conference, Dublin, 2013.
    Dewhurst RJ
    Animal; 2013 Jun; 7 Suppl 2():203-5. PubMed ID: 23739462
    [No Abstract]   [Full Text] [Related]  

  • 38. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?
    Mourao PR; Domingues Martinho V
    Environ Sci Pollut Res Int; 2017 Jul; 24(19):16107-16119. PubMed ID: 28537031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitigation of greenhouse gas emissions in the production of fluid milk.
    Tomasula PM; Nutter DW
    Adv Food Nutr Res; 2011; 62():41-88. PubMed ID: 21504821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Livestock waste treatment systems for environmental quality, food safety, and sustainability.
    Martinez J; Dabert P; Barrington S; Burton C
    Bioresour Technol; 2009 Nov; 100(22):5527-36. PubMed ID: 19369065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.