BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23739485)

  • 1. Farm-specific carbon footprinting to the farm gate for agricultural co-products using the OVERSEER® model.
    Wheeler DM; Ledgard SF; Boyes M
    Animal; 2013 Jun; 7 Suppl 2():437-43. PubMed ID: 23739485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon footprint and ammonia emissions of California beef production systems.
    Stackhouse-Lawson KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4641-55. PubMed ID: 22952361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The carbon footprint of dairy production systems through partial life cycle assessment.
    Rotz CA; Montes F; Chianese DS
    J Dairy Sci; 2010 Mar; 93(3):1266-82. PubMed ID: 20172247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An assessment of greenhouse gas emissions from the Australian vegetables industry.
    Maraseni TN; Cockfield G; Maroulis J; Chen G
    J Environ Sci Health B; 2010 Aug; 45(6):578-88. PubMed ID: 20661792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greenhouse gas emissions from forestry operations: a life cycle assessment.
    Sonne E
    J Environ Qual; 2006; 35(4):1439-50. PubMed ID: 16825464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.
    O'Brien D; Capper JL; Garnsworthy PC; Grainger C; Shalloo L
    J Dairy Sci; 2014 Mar; 97(3):1835-51. PubMed ID: 24440256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth-promoting technologies decrease the carbon footprint, ammonia emissions, and costs of California beef production systems.
    Stackhouse KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4656-65. PubMed ID: 22952364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of strain of Holstein-Friesian cow and feeding system on greenhouse gas emissions from pastoral dairy farms.
    O'Brien D; Shalloo L; Grainger C; Buckley F; Horan B; Wallace M
    J Dairy Sci; 2010 Jul; 93(7):3390-402. PubMed ID: 20630255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon footprint of Canadian dairy products: calculations and issues.
    Vergé XP; Maxime D; Dyer JA; Desjardins RL; Arcand Y; Vanderzaag A
    J Dairy Sci; 2013 Sep; 96(9):6091-104. PubMed ID: 23831091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon footprint of dairy goat milk production in New Zealand.
    Robertson K; Symes W; Garnham M
    J Dairy Sci; 2015 Jul; 98(7):4279-93. PubMed ID: 25981064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LIFE BEEF CARBON: a common framework for quantifying grass and corn based beef farms' carbon footprints.
    O'Brien D; Herron J; Andurand J; Caré S; Martinez P; Migliorati L; Moro M; Pirlo G; Dollé JB
    Animal; 2020 Apr; 14(4):834-845. PubMed ID: 31666147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of feed demand on greenhouse gas emissions and farm profitability for organic and conventional dairy farms.
    Kiefer L; Menzel F; Bahrs E
    J Dairy Sci; 2014 Dec; 97(12):7564-74. PubMed ID: 25468708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of farm-level greenhouse gas emissions in transhumance and semi-intensive sheep production systems in continental rangelands.
    Ocak Yetişgin S; Morgan-Davies C; Önder H
    Animal; 2022 Aug; 16(8):100602. PubMed ID: 35952481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk.
    Ledgard SF; Falconer SJ; Abercrombie R; Philip G; Hill JP
    J Dairy Sci; 2020 Jan; 103(1):1031-1046. PubMed ID: 31759588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: a case study.
    Mc Geough EJ; Little SM; Janzen HH; McAllister TA; McGinn SM; Beauchemin KA
    J Dairy Sci; 2012 Sep; 95(9):5164-5175. PubMed ID: 22916922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon and blue water footprints of California sheep production.
    Dougherty HC; Oltjen JW; Mitloehner FM; DePeters EJ; Pettey LA; Macon D; Finzel J; Rodrigues K; Kebreab E
    J Anim Sci; 2019 Feb; 97(2):945-961. PubMed ID: 30452693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.
    Pucker J; Jungmeier G; Siegl S; Pötsch EM
    Animal; 2013 Jun; 7 Suppl 2():283-91. PubMed ID: 23739470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of carbon footprint and sources of emissions of an extensive alpaca production system.
    Oquendo GG; Salazar-Cubillas K; Alvarado V; Gómez-Bravo CA
    Trop Anim Health Prod; 2022 Sep; 54(5):331. PubMed ID: 36175796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agricultural soil greenhouse gas emissions: a review of national inventory methods.
    Lokupitiya E; Paustian K
    J Environ Qual; 2006; 35(4):1413-27. PubMed ID: 16825462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.