These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 23739688)

  • 21. B-GATA transcription factors - insights into their structure, regulation, and role in plant development.
    Behringer C; Schwechheimer C
    Front Plant Sci; 2015; 6():90. PubMed ID: 25755661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bruno-like proteins modulate flowering time via 3' UTR-dependent decay of SOC1 mRNA.
    Kim HS; Abbasi N; Choi SB
    New Phytol; 2013 May; 198(3):747-756. PubMed ID: 23437850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional diversification within the family of B-GATA transcription factors through the leucine-leucine-methionine domain.
    Behringer C; Bastakis E; Ranftl QL; Mayer KF; Schwechheimer C
    Plant Physiol; 2014 Sep; 166(1):293-305. PubMed ID: 25077795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis.
    Mara CD; Irish VF
    Plant Physiol; 2008 Jun; 147(2):707-18. PubMed ID: 18417639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arabidopsis ABF3 and ABF4 Transcription Factors Act with the NF-YC Complex to Regulate SOC1 Expression and Mediate Drought-Accelerated Flowering.
    Hwang K; Susila H; Nasim Z; Jung JY; Ahn JH
    Mol Plant; 2019 Apr; 12(4):489-505. PubMed ID: 30639313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arabidopsis flowering integrator SOC1 transcriptionally regulates autophagy in response to long-term carbon starvation.
    Li X; Liao J; Bai H; Bei J; Li K; Luo M; Shen W; Yang C; Gao C
    J Exp Bot; 2022 Nov; 73(19):6589-6599. PubMed ID: 35852462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis.
    Yoo SK; Chung KS; Kim J; Lee JH; Hong SM; Yoo SJ; Yoo SY; Lee JS; Ahn JH
    Plant Physiol; 2005 Oct; 139(2):770-8. PubMed ID: 16183837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A repressor complex governs the integration of flowering signals in Arabidopsis.
    Li D; Liu C; Shen L; Wu Y; Chen H; Robertson M; Helliwell CA; Ito T; Meyerowitz E; Yu H
    Dev Cell; 2008 Jul; 15(1):110-20. PubMed ID: 18606145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth.
    Mouhu K; Kurokura T; Koskela EA; Albert VA; Elomaa P; Hytönen T
    Plant Cell; 2013 Sep; 25(9):3296-310. PubMed ID: 24038650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 influences flowering time, lateral branching, oil quality, and seed yield in Brassica juncea cv. Varuna.
    Tyagi S; Sri T; Singh A; Mayee P; Shivaraj SM; Sharma P; Singh A
    Funct Integr Genomics; 2019 Jan; 19(1):43-60. PubMed ID: 29943206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors.
    Yu S; Galvão VC; Zhang YC; Horrer D; Zhang TQ; Hao YH; Feng YQ; Wang S; Schmid M; Wang JW
    Plant Cell; 2012 Aug; 24(8):3320-32. PubMed ID: 22942378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis.
    Shen L; Kang YG; Liu L; Yu H
    Plant Cell; 2011 Feb; 23(2):499-514. PubMed ID: 21343416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TCP7 interacts with Nuclear Factor-Ys to promote flowering by directly regulating SOC1 in Arabidopsis.
    Li X; Zhang G; Liang Y; Hu L; Zhu B; Qi D; Cui S; Zhao H
    Plant J; 2021 Dec; 108(5):1493-1506. PubMed ID: 34607390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.
    Ding L; Wang Y; Yu H
    Plant Cell Physiol; 2013 Apr; 54(4):595-608. PubMed ID: 23396600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems.
    Dorca-Fornell C; Gregis V; Grandi V; Coupland G; Colombo L; Kater MM
    Plant J; 2011 Sep; 67(6):1006-17. PubMed ID: 21609362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of flowering pathway integrators in Arabidopsis.
    Moon J; Lee H; Kim M; Lee I
    Plant Cell Physiol; 2005 Feb; 46(2):292-9. PubMed ID: 15695467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DELLA proteins interact with FLC to repress flowering transition.
    Li M; An F; Li W; Ma M; Feng Y; Zhang X; Guo H
    J Integr Plant Biol; 2016 Jul; 58(7):642-55. PubMed ID: 26584710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MPF2-like MADS-box genes affecting expression of SOC1 and MAF1 are recruited to control flowering time.
    Khan MR; Khan IU; Ali GM
    Mol Biotechnol; 2013 May; 54(1):25-36. PubMed ID: 22539207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization.
    Michaels SD; Ditta G; Gustafson-Brown C; Pelaz S; Yanofsky M; Amasino RM
    Plant J; 2003 Mar; 33(5):867-74. PubMed ID: 12609028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide binding analysis of AtGNC and AtCGA1 demonstrates their cross-regulation and common and specific functions.
    Xu Z; Casaretto JA; Bi YM; Rothstein SJ
    Plant Direct; 2017 Oct; 1(4):e00016. PubMed ID: 31245665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.