These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23739769)

  • 1. Molecular roles of Myo1c function in lipid raft exocytosis.
    Brandstaetter H; Kendrick-Jones J; Buss F
    Commun Integr Biol; 2012 Sep; 5(5):508-10. PubMed ID: 23739769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.
    Brandstaetter H; Kendrick-Jones J; Buss F
    J Cell Sci; 2012 Apr; 125(Pt 8):1991-2003. PubMed ID: 22328521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of functional MYO1C/myosin 1c, a motor protein involved in lipid raft trafficking, disrupts autophagosome-lysosome fusion.
    Brandstaetter H; Kishi-Itakura C; Tumbarello DA; Manstein DJ; Buss F
    Autophagy; 2014; 10(12):2310-23. PubMed ID: 25551774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes.
    López-Ortega O; Santos-Argumedo L
    Front Immunol; 2017; 8():1731. PubMed ID: 29321775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ternary SNARE complexes are enriched in lipid rafts during mast cell exocytosis.
    Puri N; Roche PA
    Traffic; 2006 Nov; 7(11):1482-94. PubMed ID: 16984405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis.
    Chamberlain LH; Burgoyne RD; Gould GW
    Proc Natl Acad Sci U S A; 2001 May; 98(10):5619-24. PubMed ID: 11331757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of human myosin 1c--the motor in GLUT4 exocytosis: implications for Ca2+ regulation and 14-3-3 binding.
    Münnich S; Taft MH; Manstein DJ
    J Mol Biol; 2014 May; 426(10):2070-81. PubMed ID: 24636949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.
    Iswanto AB; Kim JY
    Plants (Basel); 2017 Apr; 6(2):. PubMed ID: 28368351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP; Gallegos AM; McIntosh AL; Kier AB; Schroeder F
    Biochemistry; 2003 Dec; 42(49):14583-98. PubMed ID: 14661971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of Membrane Lipid Homeostasis by Bichalcone Analog TSWU-BR4 Attenuates Function of GRP78 in Regulation of the Oxidative Balance and Invasion of Cancer Cells.
    Lee TL; Wang SG; Chan WL; Lee CH; Wu TS; Lin ML; Chen SS
    Cells; 2020 Feb; 9(2):. PubMed ID: 32033487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid raft involvement in yeast cell growth and death.
    Mollinedo F
    Front Oncol; 2012; 2():140. PubMed ID: 23087902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin IC generates power over a range of loads via a new tension-sensing mechanism.
    Greenberg MJ; Lin T; Goldman YE; Shuman H; Ostap EM
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):E2433-40. PubMed ID: 22908250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNARE proteins and 'membrane rafts'.
    Lang T
    J Physiol; 2007 Dec; 585(Pt 3):693-8. PubMed ID: 17478530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts.
    Balasubramanian N; Scott DW; Castle JD; Casanova JE; Schwartz MA
    Nat Cell Biol; 2007 Dec; 9(12):1381-91. PubMed ID: 18026091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatin is a major lipid-raft component of platelet alpha granules.
    Mairhofer M; Steiner M; Mosgoeller W; Prohaska R; Salzer U
    Blood; 2002 Aug; 100(3):897-904. PubMed ID: 12130500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipids as targeting signals: lipid rafts and intracellular trafficking.
    Helms JB; Zurzolo C
    Traffic; 2004 Apr; 5(4):247-54. PubMed ID: 15030566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloid-β Interactions with Lipid Rafts in Biomimetic Systems: A Review of Laboratory Methods.
    Staneva G; Watanabe C; Puff N; Yordanova V; Seigneuret M; Angelova MI
    Methods Mol Biol; 2021; 2187():47-86. PubMed ID: 32770501
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.