These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 23739780)

  • 1. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli.
    Kimura Y; Tanaka T; Higashi H; Morikawa N
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2831-8. PubMed ID: 23739780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSVEP-based Bremen-BCI interface--boosting information transfer rates.
    Volosyak I
    J Neural Eng; 2011 Jun; 8(3):036020. PubMed ID: 21555847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Customized stimulation enhances performance of independent binary SSVEP-BCIs.
    Lopez-Gordo MA; Prieto A; Pelayo F; Morillas C
    Clin Neurophysiol; 2011 Jan; 122(1):128-33. PubMed ID: 20573542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-speed BCI based on code modulation VEP.
    Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S
    J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces.
    Waytowich NR; Krusienski DJ
    J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.
    Chang HC; Lee PL; Lo MT; Lee IH; Yeh TK; Chang CY
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):305-12. PubMed ID: 22203724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface.
    Zhang Y; Xu P; Cheng K; Yao D
    J Neurosci Methods; 2014 Jan; 221():32-40. PubMed ID: 23928153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies.
    Chen X; Wang Y; Zhang S; Gao S; Hu Y; Gao X
    J Neural Eng; 2017 Apr; 14(2):026013. PubMed ID: 28091397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interface based on intermodulation frequency.
    Chen X; Chen Z; Gao S; Gao X
    J Neural Eng; 2013 Dec; 10(6):066009. PubMed ID: 24140740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.