BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23739964)

  • 1. O2-sensing neurons control CO2 response in C. elegans.
    Carrillo MA; Guillermin ML; Rengarajan S; Okubo RP; Hallem EA
    J Neurosci; 2013 Jun; 33(23):9675-83. PubMed ID: 23739964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans.
    Bretscher AJ; Busch KE; de Bono M
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8044-9. PubMed ID: 18524954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans.
    Gramstrup Petersen J; Rojo Romanos T; Juozaityte V; Redo Riveiro A; Hums I; Traunmüller L; Zimmer M; Pocock R
    PLoS Genet; 2013 May; 9(5):e1003511. PubMed ID: 23671427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent modulation of C. elegans behavior by ambient oxygen.
    Cheung BH; Cohen M; Rogers C; Albayram O; de Bono M
    Curr Biol; 2005 May; 15(10):905-17. PubMed ID: 15916947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distributed chemosensory circuit for oxygen preference in C. elegans.
    Chang AJ; Chronis N; Karow DS; Marletta MA; Bargmann CI
    PLoS Biol; 2006 Sep; 4(9):e274. PubMed ID: 16903785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans.
    Abergel R; Livshits L; Shaked M; Chatterjee AK; Gross E
    Aging Cell; 2017 Apr; 16(2):401-413. PubMed ID: 28054425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute carbon dioxide avoidance in Caenorhabditis elegans.
    Hallem EA; Sternberg PW
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):8038-43. PubMed ID: 18524955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLOBIN-5-dependent O2 responses are regulated by PDL-1/PrBP that targets prenylated soluble guanylate cyclases to dendritic endings.
    Gross E; Soltesz Z; Oda S; Zelmanovich V; Abergel Z; de Bono M
    J Neurosci; 2014 Dec; 34(50):16726-38. PubMed ID: 25505325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity.
    Fenk LA; de Bono M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3525-34. PubMed ID: 26100886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans.
    Glauser DA; Chen WC; Agin R; Macinnis BL; Hellman AB; Garrity PA; Tan MW; Goodman MB
    Genetics; 2011 May; 188(1):91-103. PubMed ID: 21368276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas sensing in nematodes.
    Carrillo MA; Hallem EA
    Mol Neurobiol; 2015; 51(3):919-31. PubMed ID: 24906953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-modulation of homeostatic responses to temperature, oxygen and carbon dioxide in C. elegans.
    Kodama-Namba E; Fenk LA; Bretscher AJ; Gross E; Busch KE; de Bono M
    PLoS Genet; 2013; 9(12):e1004011. PubMed ID: 24385919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding a neural circuit controlling global animal state in C. elegans.
    Laurent P; Soltesz Z; Nelson GM; Chen C; Arellano-Carbajal F; Levy E; de Bono M
    Elife; 2015 Mar; 4():. PubMed ID: 25760081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropeptide receptors NPR-1 and NPR-2 regulate Caenorhabditis elegans avoidance response to the plant stress hormone methyl salicylate.
    Luo J; Xu Z; Tan Z; Zhang Z; Ma L
    Genetics; 2015 Feb; 199(2):523-31. PubMed ID: 25527285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory of recent oxygen experience switches pheromone valence in
    Fenk LA; de Bono M
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4195-4200. PubMed ID: 28373553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans.
    Chen Z; Hendricks M; Cornils A; Maier W; Alcedo J; Zhang Y
    Neuron; 2013 Feb; 77(3):572-85. PubMed ID: 23395381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in
    Valperga G; de Bono M
    Elife; 2022 Feb; 11():. PubMed ID: 35201977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel role for the zinc-finger transcription factor EGL-46 in the differentiation of gas-sensing neurons in Caenorhabditis elegans.
    Rojo Romanos T; Petersen JG; Riveiro AR; Pocock R
    Genetics; 2015 Jan; 199(1):157-63. PubMed ID: 25395666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of sensory information processing by a neuroglobin in
    Oda S; Toyoshima Y; de Bono M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):E4658-E4665. PubMed ID: 28536200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Counterbalance between BAG and URX neurons via guanylate cyclases controls lifespan homeostasis in C. elegans.
    Liu T; Cai D
    EMBO J; 2013 May; 32(11):1529-42. PubMed ID: 23584532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.