BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23740044)

  • 1. Implications of aberrant temperature-sensitive glucose transport via the glucose transporter deficiency mutant (GLUT1DS) T295M for the alternate-access and fixed-site transport models.
    Cunningham P; Naftalin RJ
    J Membr Biol; 2013 Jun; 246(6):495-511. PubMed ID: 23740044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional studies of the T295M mutation causing Glut1 deficiency: glucose efflux preferentially affected by T295M.
    Wang D; Yang H; Shi L; Ma L; Fujii T; Engelstad K; Pascual JM; De Vivo DC
    Pediatr Res; 2008 Nov; 64(5):538-43. PubMed ID: 18614966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease-associated Glut1 single amino acid substitute mutations S66F, R126C, and T295M constitute Glut1-deficiency states in vitro.
    Wong HY; Law PY; Ho YY
    Mol Genet Metab; 2007 Feb; 90(2):193-8. PubMed ID: 17052934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new mouse model of GLUT1 deficiency syndrome exhibits abnormal sleep-wake patterns and alterations of glucose kinetics in the brain.
    Furuse T; Mizuma H; Hirose Y; Kushida T; Yamada I; Miura I; Masuya H; Funato H; Yanagisawa M; Onoe H; Wakana S
    Dis Model Mech; 2019 Sep; 12(9):. PubMed ID: 31399478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Docking studies show that D-glucose and quercetin slide through the transporter GLUT1.
    Cunningham P; Afzal-Ahmed I; Naftalin RJ
    J Biol Chem; 2006 Mar; 281(9):5797-803. PubMed ID: 16407180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of the human glucose transporter GLUT1.
    Deng D; Xu C; Sun P; Wu J; Yan C; Hu M; Yan N
    Nature; 2014 Jun; 510(7503):121-5. PubMed ID: 24847886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Protein Kinase C Phosphorylation Motif in GLUT1 Affects Glucose Transport and is Mutated in GLUT1 Deficiency Syndrome.
    Lee EE; Ma J; Sacharidou A; Mi W; Salato VK; Nguyen N; Jiang Y; Pascual JM; North PE; Shaul PW; Mettlen M; Wang RC
    Mol Cell; 2015 Jun; 58(5):845-53. PubMed ID: 25982116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A
    J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconciling contradictory findings: Glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters.
    Lloyd KP; Ojelabi OA; De Zutter JK; Carruthers A
    J Biol Chem; 2017 Dec; 292(51):21035-21046. PubMed ID: 29066623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Insights into Protein Stability and Self-aggregation in GLUT1 Genetic Variants Causing GLUT1-Deficiency Syndrome.
    Raja M; Kinne RKH
    J Membr Biol; 2020 Apr; 253(2):87-99. PubMed ID: 32025761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an amino acid residue that lies between the exofacial vestibule and exofacial substrate-binding site of the Glut1 sugar permeation pathway.
    Mueckler M; Makepeace C
    J Biol Chem; 1997 Nov; 272(48):30141-6. PubMed ID: 9374494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis.
    Mueckler M; Makepeace C
    Biochemistry; 2009 Jun; 48(25):5934-42. PubMed ID: 19449892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T295M-associated Glut1 deficiency syndrome with normal erythrocyte 3-OMG uptake.
    Fujii T; Morimoto M; Yoshioka H; Ho YY; Law PP; Wang D; De Vivo DC
    Brain Dev; 2011 Apr; 33(4):316-20. PubMed ID: 20630673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythroid glucose transport in health and disease.
    Guizouarn H; Allegrini B
    Pflugers Arch; 2020 Sep; 472(9):1371-1383. PubMed ID: 32474749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro model of glucose transporter 1 deficiency syndrome at the blood-brain barrier using induced pluripotent stem cells.
    Pervaiz I; Zahra FT; Mikelis CM; Al-Ahmad AJ
    J Neurochem; 2022 Sep; 162(6):483-500. PubMed ID: 35943296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic and Genotypic Spectrum of Glucose Transporter-1 Deficiency Syndrome.
    Bourque DK; Cordeiro D; Nimmo GAM; Kobayashi J; Mercimek-Andrews S
    Can J Neurol Sci; 2021 Nov; 48(6):826-830. PubMed ID: 33431108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome.
    Flatt JF; Guizouarn H; Burton NM; Borgese F; Tomlinson RJ; Forsyth RJ; Baldwin SA; Levinson BE; Quittet P; Aguilar-Martinez P; Delaunay J; Stewart GW; Bruce LJ
    Blood; 2011 Nov; 118(19):5267-77. PubMed ID: 21791420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-scanning mutagenesis and substituted cysteine accessibility analysis of transmembrane segment 4 of the Glut1 glucose transporter.
    Mueckler M; Makepeace C
    J Biol Chem; 2005 Nov; 280(47):39562-8. PubMed ID: 16172126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upstream SLC2A1 translation initiation causes GLUT1 deficiency syndrome.
    Willemsen MA; Vissers LE; Verbeek MM; van Bon BW; Geuer S; Gilissen C; Klepper J; Kwint MP; Leen WG; Pennings M; Wevers RA; Veltman JA; Kamsteeg EJ
    Eur J Hum Genet; 2017 Jun; 25(6):771-774. PubMed ID: 28378819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational and functional analysis of Glucose transporter I deficiency syndrome.
    Nakamura S; Osaka H; Muramatsu S; Aoki S; Jimbo EF; Yamagata T
    Mol Genet Metab; 2015 Nov; 116(3):157-62. PubMed ID: 26304067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.