These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23740286)

  • 1. Electrical observation of sub-band formation in SnO2 nanobelts.
    Viana ER; González JC; Ribeiro GM; de Oliveira AG
    Nanoscale; 2013 Jul; 5(14):6439-44. PubMed ID: 23740286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-to-insulator transition induced by UV illumination in a single SnO
    Viana ER; Ribeiro GM; de Oliveira AG; González JC
    Nanotechnology; 2017 Nov; 28(44):445703. PubMed ID: 28820739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-electron and quantum confinement limits in length-scaled silicon nanowires.
    Wang C; Jones ME; Durrani ZA
    Nanotechnology; 2015 Jul; 26(30):305203. PubMed ID: 26160889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabricating a silicon nanowire by using the proximity effect in electron beam lithography for investigation of the Coulomb blockade effect.
    Zhang X; Fang Z; Chen K; Xu J; Huang X
    Nanotechnology; 2011 Jan; 22(3):035302. PubMed ID: 21149960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room temperature Coulomb blockade effects in Au nanocluster/pentacene single electron transistors.
    Zheng H; Asbahi M; Mukherjee S; Mathai CJ; Gangopadhyay K; Yang JK; Gangopadhyay S
    Nanotechnology; 2015 Sep; 26(35):355204. PubMed ID: 26267227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles studies of the electronic and mechanical properties of ZnO nanobelts with different dominant surfaces.
    Qi J; Shi D; Jia J
    Nanotechnology; 2008 Oct; 19(43):435707. PubMed ID: 21832711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature observation of quantum confinement in single InAs nanowires.
    Halpern E; Henning A; Shtrikman H; Rurali R; Cartoixà X; Rosenwaks Y
    Nano Lett; 2015 Jan; 15(1):481-5. PubMed ID: 25494683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-temperature electronic transport in single K(0.27)MnO(2)·0.5H(2)O nanowires: enhanced electron-electron interaction.
    Long YZ; Yin ZH; Chen ZJ; Jin AZ; Gu CZ; Zhang HT; Chen XH
    Nanotechnology; 2008 May; 19(21):215708. PubMed ID: 21730587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossover from Coulomb blockade to ballistic transport in InAs nanowire devices.
    Wang LB; Pan D; Huang GY; Zhao J; Kang N; Xu HQ
    Nanotechnology; 2019 Mar; 30(12):124001. PubMed ID: 30566928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nature of electronic states in atomically thin MoS₂ field-effect transistors.
    Ghatak S; Pal AN; Ghosh A
    ACS Nano; 2011 Oct; 5(10):7707-12. PubMed ID: 21902203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coulomb-blockade transport in single-crystal organic thin-film transistors.
    Schoonveld WA; Wildeman J; Fichou D; Bobbert PA; van Wees BJ ; Klapwijk TM
    Nature; 2000 Apr; 404(6781):977-80. PubMed ID: 10801122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of oxide nanobelts and nanowires.
    Wang ZL; Pan ZW; Dai ZR
    Microsc Microanal; 2002 Dec; 8(6):467-74. PubMed ID: 12533208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of the electronic characteristics of ZnO nanowire field effect transistors by proton irradiation.
    Hong WK; Jo G; Sohn JI; Park W; Choe M; Wang G; Kahng YH; Welland ME; Lee T
    ACS Nano; 2010 Feb; 4(2):811-8. PubMed ID: 20112950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts.
    Luo S; Fan J; Liu W; Zhang M; Song Z; Lin C; Wu X; Chu PK
    Nanotechnology; 2006 Mar; 17(6):1695-9. PubMed ID: 26558579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures.
    Chakraborty G; Sarkar CK; Lu XB; Dai JY
    Nanotechnology; 2008 Jun; 19(25):255401. PubMed ID: 21828650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centimeter-long Ta3N5 nanobelts: synthesis, electrical transport, and photoconductive properties.
    Wu XC; Tao YR; Li L; Bando Y; Golberg D
    Nanotechnology; 2013 May; 24(17):175701. PubMed ID: 23548821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the electron transport at single donors in zinc oxide with a scanning tunnelling microscope.
    Zheng H; Weismann A; Berndt R
    Nat Commun; 2014; 5():2992. PubMed ID: 24390611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors.
    Lee W; Su P
    Nanotechnology; 2009 Feb; 20(6):065202. PubMed ID: 19417374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon-assisted spin-polarized tunneling through an interacting quantum dot.
    Rudziński W
    J Phys Condens Matter; 2008 Jul; 20(27):275214. PubMed ID: 21694375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eightfold shell filling in a double-wall carbon nanotube quantum dot.
    Moon S; Song W; Lee JS; Kim N; Kim J; Lee SG; Choi MS
    Phys Rev Lett; 2007 Oct; 99(17):176804. PubMed ID: 17995359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.