BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23740385)

  • 21. Asymmetric hollow nanorod formation through a partial galvanic replacement reaction.
    Seo D; Song H
    J Am Chem Soc; 2009 Dec; 131(51):18210-1. PubMed ID: 19994851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupling modes of gold trimer superstructures.
    Funston AM; Davis TJ; Novo C; Mulvaney P
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3472-82. PubMed ID: 21807722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A highly active SERS sensing substrate: core-satellite assembly of gold nanorods/nanoplates.
    Li DD; Wang J; Zheng GC; Liu JH; Xu WH
    Nanotechnology; 2013 Jun; 24(23):235502. PubMed ID: 23669096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New application of a traditional method: colorimetric sensor array for reducing sugars based on the in-situ formation of core-shell gold nanorod-coated silver nanoparticles by the traditional Tollens reaction.
    Zhang X; Wang Z; Liu Z; Liu B; Wu R; Chen Z; Zuo X
    Mikrochim Acta; 2021 Mar; 188(4):142. PubMed ID: 33774720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods.
    Wu L; Wang Z; Zong S; Huang Z; Zhang P; Cui Y
    Biosens Bioelectron; 2012; 38(1):94-9. PubMed ID: 22647534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A non enzymatic glucose biosensor based on an ultrasensitive calix[4]arene functionalized boronic acid gold nanoprobe for sensing in human blood serum.
    Pandya A; Sutariya PG; Menon SK
    Analyst; 2013 Apr; 138(8):2483-90. PubMed ID: 23476922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers.
    Tamma VA; Cui Y; Zhou J; Park W
    Nanoscale; 2013 Feb; 5(4):1592-602. PubMed ID: 23329115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Freezing the self-assembly process of gold nanocrystals.
    Abbas A; Tian L; Kattumenu R; Halim A; Singamaneni S
    Chem Commun (Camb); 2012 Feb; 48(11):1677-9. PubMed ID: 22187049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods.
    Smith DK; Korgel BA
    Langmuir; 2008 Feb; 24(3):644-9. PubMed ID: 18184021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies.
    Murawala P; Phadnis SM; Bhonde RR; Prasad BL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):224-8. PubMed ID: 19570660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Silver deposition directed by self-assembled gold nanorods for amplified electrochemical immunoassay.
    Zhang H; Ning D; Ma L; Zheng J
    Anal Chim Acta; 2016 Jan; 902():82-88. PubMed ID: 26703256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.
    Philip D; Unni C; Aromal SA; Vidhu VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):899-904. PubMed ID: 21215687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate.
    Iqbal M; Tae G
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3355-9. PubMed ID: 17252764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction.
    Zhang Q; Xie J; Lee JY; Zhang J; Boothroyd C
    Small; 2008 Aug; 4(8):1067-71. PubMed ID: 18651712
    [No Abstract]   [Full Text] [Related]  

  • 35. Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers.
    Gentili D; Ori G; Comes Franchini M
    Chem Commun (Camb); 2009 Oct; (39):5874-6. PubMed ID: 19787126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC; Yong KT; Baev A; Hu R; Prasad PN
    Opt Express; 2009 Oct; 17(21):19041-6. PubMed ID: 20372639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photochemical induced growth and aggregation of metal nanoparticles in diode-array spectrophotometer via excited dimethyl-sulfoxide.
    Zidki T; Cohen H; Meyerstein D
    Phys Chem Chem Phys; 2010 Oct; 12(39):12862-7. PubMed ID: 20820594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic alloying of preformed gold and silver nanoparticles.
    Radziuk DV; Zhang W; Shchukin D; Möhwald H
    Small; 2010 Feb; 6(4):545-53. PubMed ID: 20108230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay.
    Wang Y; Li D; Ren W; Liu Z; Dong S; Wang E
    Chem Commun (Camb); 2008 Jun; (22):2520-2. PubMed ID: 18506230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.