BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23740841)

  • 1. Radiation pressure on a biconcave human Red Blood Cell and the resulting deformation in a pair of parallel optical traps.
    Liao GB; Chen YQ; Bareil PB; Sheng Y; Chiou A; Chang MS
    J Biophotonics; 2014 Oct; 7(10):782-7. PubMed ID: 23740841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic deformation of red blood cell in dual-trap optical tweezers.
    Rancourt-Grenier S; Wei MT; Bai JJ; Chiou A; Bareil PP; Duval PL; Sheng Y
    Opt Express; 2010 May; 18(10):10462-72. PubMed ID: 20588900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers.
    Yu L; Sheng Y; Chiou A
    Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of cell elasticity through hybrid ray optics and continuum mechanics modeling of cell deformation in the optical stretcher.
    Ekpenyong AE; Posey CL; Chaput JL; Burkart AK; Marquardt MM; Smith TJ; Nichols MG
    Appl Opt; 2009 Nov; 48(32):6344-54. PubMed ID: 19904335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientational dynamics of human red blood cells in an optical trap.
    Parthasarathi P; Nagesh BV; Lakkegowda Y; Iyengar SS; Ananthamurthy S; Bhattacharya S
    J Biomed Opt; 2013 Feb; 18(2):25001. PubMed ID: 23381225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of N-ethylmaleimide, chymotrypsin, and H₂O₂ on the viscoelasticity of human erythrocytes: experimental measurement and theoretical analysis.
    Chen YQ; Chen CW; Ni YL; Huang YS; Lin O; Chien S; Sung LA; Chiou A
    J Biophotonics; 2014 Aug; 7(8):647-55. PubMed ID: 23963649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers.
    Tan Y; Sun D; Wang J; Huang W
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multiscale model for red blood cell mechanics.
    Hartmann D
    Biomech Model Mechanobiol; 2010 Feb; 9(1):1-17. PubMed ID: 19440743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral migration of an elastic capsule by optical force in a uniform flow.
    Chang CB; Huang WX; Sung HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066306. PubMed ID: 23368037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K; Wada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of spherical red blood cell deformation in a dual-beam optical stretcher.
    Bareil PB; Sheng Y; Chen YQ; Chiou A
    Opt Express; 2007 Nov; 15(24):16029-34. PubMed ID: 19550890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects.
    Kauppila A; Kinnunen M; Karmenyan A; Myllylä R
    Appl Opt; 2012 Aug; 51(23):5705-12. PubMed ID: 22885584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.
    Li J; Dao M; Lim CT; Suresh S
    Biophys J; 2005 May; 88(5):3707-19. PubMed ID: 15749778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of a dedicated mechanical model for red blood cells: numerical simulations of optical tweezers experiment.
    Sigüenza J; Mendez S; Nicoud F
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():28-9. PubMed ID: 25074148
    [No Abstract]   [Full Text] [Related]  

  • 20. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells.
    Liao GB; Bareil PB; Sheng Y; Chiou A
    Opt Express; 2008 Feb; 16(3):1996-2004. PubMed ID: 18542279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.