These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 23741319)
1. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. Der BS; Kluwe C; Miklos AE; Jacak R; Lyskov S; Gray JJ; Georgiou G; Ellington AD; Kuhlman B PLoS One; 2013; 8(5):e64363. PubMed ID: 23741319 [TBL] [Abstract][Full Text] [Related]
2. Modulation of protein stability and aggregation properties by surface charge engineering. Raghunathan G; Sokalingam S; Soundrarajan N; Madan B; Munussami G; Lee SG Mol Biosyst; 2013 Sep; 9(9):2379-89. PubMed ID: 23861008 [TBL] [Abstract][Full Text] [Related]
3. Boosting protein stability with the computational design of β-sheet surfaces. Kim DN; Jacobs TM; Kuhlman B Protein Sci; 2016 Mar; 25(3):702-10. PubMed ID: 26701383 [TBL] [Abstract][Full Text] [Related]
4. TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions. Contessoto VG; de Oliveira VM; Fernandes BR; Slade GG; Leite VBP Proteins; 2018 Nov; 86(11):1184-1188. PubMed ID: 30218467 [TBL] [Abstract][Full Text] [Related]
5. Supercharged Phosphotriesterase for improved Paraoxon activity. Kronenberg J; Britton D; Halvorsen L; Chu S; Kulapurathazhe MJ; Chen J; Lakshmi A; Renfrew PD; Bonneau R; Montclare JK Protein Eng Des Sel; 2024 Jan; 37():. PubMed ID: 39292622 [TBL] [Abstract][Full Text] [Related]
6. Anion solvation enhanced by positive supercharging mutations preserves thermal stability of an antibody in a wide pH range. Kasahara K; Kuroda D; Tanabe A; Kawade R; Nagatoishi S; Tsumoto K Biochem Biophys Res Commun; 2021 Jul; 563():54-59. PubMed ID: 34058475 [TBL] [Abstract][Full Text] [Related]
7. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding. Matta CF; Bader RF Proteins; 2003 Aug; 52(3):360-99. PubMed ID: 12866050 [TBL] [Abstract][Full Text] [Related]
8. Electrostatic contribution of surface charge residues to the stability of a thermophilic protein: benchmarking experimental and predicted pKa values. Chan CH; Wilbanks CC; Makhatadze GI; Wong KB PLoS One; 2012; 7(1):e30296. PubMed ID: 22279578 [TBL] [Abstract][Full Text] [Related]
9. Structure-based design of supercharged, highly thermoresistant antibodies. Miklos AE; Kluwe C; Der BS; Pai S; Sircar A; Hughes RA; Berrondo M; Xu J; Codrea V; Buckley PE; Calm AM; Welsh HS; Warner CR; Zacharko MA; Carney JP; Gray JJ; Georgiou G; Kuhlman B; Ellington AD Chem Biol; 2012 Apr; 19(4):449-55. PubMed ID: 22520751 [TBL] [Abstract][Full Text] [Related]
10. Charge Shielding Prevents Aggregation of Supercharged GFP Variants at High Protein Concentration. Laber JR; Dear BJ; Martins ML; Jackson DE; DiVenere A; Gollihar JD; Ellington AD; Truskett TM; Johnston KP; Maynard JA Mol Pharm; 2017 Oct; 14(10):3269-3280. PubMed ID: 28870080 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of Electrospray Supercharging for Unfolded Proteins: Solvent-Mediated Stabilization of Protonated Sites During Chain Ejection. Peters I; Metwally H; Konermann L Anal Chem; 2019 May; 91(10):6943-6952. PubMed ID: 31045347 [TBL] [Abstract][Full Text] [Related]
12. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges. Marti DN; Bosshard HR J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476 [TBL] [Abstract][Full Text] [Related]
13. Surface supercharged human enteropeptidase light chain shows improved solubility and refolding yield. Simeonov P; Berger-Hoffmann R; Hoffmann R; Sträter N; Zuchner T Protein Eng Des Sel; 2011 Mar; 24(3):261-8. PubMed ID: 21084283 [TBL] [Abstract][Full Text] [Related]
14. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering. Close DW; Paul CD; Langan PS; Wilce MC; Traore DA; Halfmann R; Rocha RC; Waldo GS; Payne RJ; Rucker JB; Prescott M; Bradbury AR Proteins; 2015 Jul; 83(7):1225-37. PubMed ID: 25287913 [TBL] [Abstract][Full Text] [Related]
15. Deletional protein engineering based on stable fold. Raghunathan G; Soundrarajan N; Sokalingam S; Yun H; Lee SG PLoS One; 2012; 7(12):e51510. PubMed ID: 23240034 [TBL] [Abstract][Full Text] [Related]
16. Protein refolding in silico with atom-based statistical potentials and conformational search using a simple genetic algorithm. Fang Q; Shortle D J Mol Biol; 2006 Jun; 359(5):1456-67. PubMed ID: 16678202 [TBL] [Abstract][Full Text] [Related]
17. Engineering more stable proteins. Kazlauskas R Chem Soc Rev; 2018 Dec; 47(24):9026-9045. PubMed ID: 30306986 [TBL] [Abstract][Full Text] [Related]
18. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
19. A fast method for predicting amino acid mutations that lead to unfolding. Wright JD; Lim C Protein Eng; 2001 Jul; 14(7):479-86. PubMed ID: 11522921 [TBL] [Abstract][Full Text] [Related]
20. Crown Ether Effects on the Location of Charge Carriers in Electrospray Droplets: Implications for the Mechanism of Protein Charging and Supercharging. Metwally H; Konermann L Anal Chem; 2018 Mar; 90(6):4126-4134. PubMed ID: 29489334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]