These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23741499)

  • 1. The development of a universal in silico predictor of protein-protein interactions.
    Valente GT; Acencio ML; Martins C; Lemke N
    PLoS One; 2013; 8(5):e65587. PubMed ID: 23741499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting reliable non interacting proteins (NIPs) significantly enhancing the computational prediction of protein-protein interactions using machine learning methods.
    Srivastava A; Mazzocco G; Kel A; Wyrwicz LS; Plewczynski D
    Mol Biosyst; 2016 Mar; 12(3):778-85. PubMed ID: 26738778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.
    Chen CT; Peng HP; Jian JW; Tsai KC; Chang JY; Yang EW; Chen JB; Ho SY; Hsu WL; Yang AS
    PLoS One; 2012; 7(6):e37706. PubMed ID: 22701576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting protein-protein interactions using high-quality non-interacting pairs.
    Zhang L; Yu G; Guo M; Wang J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):525. PubMed ID: 30598096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational methods for predicting protein-protein interactions.
    Pitre S; Alamgir M; Green JR; Dumontier M; Dehne F; Golshani A
    Adv Biochem Eng Biotechnol; 2008; 110():247-67. PubMed ID: 18202838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in predicting and modeling protein-protein interactions.
    Durham J; Zhang J; Humphreys IR; Pei J; Cong Q
    Trends Biochem Sci; 2023 Jun; 48(6):527-538. PubMed ID: 37061423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines.
    González AJ; Liao L
    BMC Bioinformatics; 2010 Oct; 11():537. PubMed ID: 21034480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAIA: a gram-based interaction analysis tool--an approach for identifying interacting domains in yeast.
    Zhang KX; Ouellette BF
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S60. PubMed ID: 19208164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of physical protein interactions and characterization of interactome orphans.
    Kotlyar M; Pastrello C; Pivetta F; Lo Sardo A; Cumbaa C; Li H; Naranian T; Niu Y; Ding Z; Vafaee F; Broackes-Carter F; Petschnigg J; Mills GB; Jurisicova A; Stagljar I; Maestro R; Jurisica I
    Nat Methods; 2015 Jan; 12(1):79-84. PubMed ID: 25402006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the druggability of protein-protein interactions by a supervised machine-learning method.
    Sugaya N; Ikeda K
    BMC Bioinformatics; 2009 Aug; 10():263. PubMed ID: 19703312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences.
    Guo Y; Yu L; Wen Z; Li M
    Nucleic Acids Res; 2008 May; 36(9):3025-30. PubMed ID: 18390576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-protein interactions by fusing various Chou's pseudo components and using wavelet denoising approach.
    Tian B; Wu X; Chen C; Qiu W; Ma Q; Yu B
    J Theor Biol; 2019 Feb; 462():329-346. PubMed ID: 30452960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More challenges for machine-learning protein interactions.
    Hamp T; Rost B
    Bioinformatics; 2015 May; 31(10):1521-5. PubMed ID: 25586513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition.
    Huang YA; You ZH; Chen X; Yan GY
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):120. PubMed ID: 28155718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of protein-protein interaction strength using domain features with supervised regression.
    Kamada M; Sakuma Y; Hayashida M; Akutsu T
    ScientificWorldJournal; 2014; 2014():240673. PubMed ID: 25093200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding protein-protein interactions using local structural features.
    Planas-Iglesias J; Bonet J; García-García J; Marín-López MA; Feliu E; Oliva B
    J Mol Biol; 2013 Apr; 425(7):1210-24. PubMed ID: 23353828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network analysis and in silico prediction of protein-protein interactions with applications in drug discovery.
    Murakami Y; Tripathi LP; Prathipati P; Mizuguchi K
    Curr Opin Struct Biol; 2017 Jun; 44():134-142. PubMed ID: 28364585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved method for predicting interactions between virus and human proteins.
    Kim B; Alguwaizani S; Zhou X; Huang DS; Park B; Han K
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650024. PubMed ID: 27397631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.