BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 23741505)

  • 21. Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula.
    Gorton AJ; Heath KD; Pilet-Nayel ML; Baranger A; Stinchcombe JR
    G3 (Bethesda); 2012 Nov; 2(11):1291-303. PubMed ID: 23173081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies.
    Negro SS; Millet EJ; Madur D; Bauland C; Combes V; Welcker C; Tardieu F; Charcosset A; Nicolas SD
    BMC Plant Biol; 2019 Jul; 19(1):318. PubMed ID: 31311506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic variations and association study of agronomic traits in flax.
    Xie D; Dai Z; Yang Z; Tang Q; Sun J; Yang X; Song X; Lu Y; Zhao D; Zhang L; Su J
    BMC Genomics; 2018 Jul; 19(1):512. PubMed ID: 29969983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrapopulation genomics in a model mutualist: Population structure and candidate symbiosis genes under selection in Medicago truncatula.
    Grillo MA; De Mita S; Burke PV; Solórzano-Lowell KL; Heath KD
    Evolution; 2016 Dec; 70(12):2704-2717. PubMed ID: 27757965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-Wide Association Study of Root System Development at Seedling Stage in Rice.
    Zhang H; San ML; Jang SG; Lee JH; Kim NE; Lee AR; Park SY; Cao FY; Chin JH; Kwon SW
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33255557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.
    Liu F; Schmidt RH; Reif JC; Jiang Y
    G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs.
    Huang C; Nie X; Shen C; You C; Li W; Zhao W; Zhang X; Lin Z
    Plant Biotechnol J; 2017 Nov; 15(11):1374-1386. PubMed ID: 28301713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing.
    Veerappan V; Jani M; Kadel K; Troiani T; Gale R; Mayes T; Shulaev E; Wen J; Mysore KS; Azad RK; Dickstein R
    BMC Genomics; 2016 Feb; 17():141. PubMed ID: 26920390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of novel loci associated with maturity and yield traits in early maturity soybean plant introduction lines.
    Copley TR; Duceppe MO; O'Donoughue LS
    BMC Genomics; 2018 Mar; 19(1):167. PubMed ID: 29490606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide association and epistatic interactions of flowering time in soybean cultivar.
    Kim KH; Kim JY; Lim WJ; Jeong S; Lee HY; Cho Y; Moon JK; Kim N
    PLoS One; 2020; 15(1):e0228114. PubMed ID: 31968016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular adaptation in flowering and symbiotic recognition pathways: insights from patterns of polymorphism in the legume Medicago truncatula.
    De Mita S; Chantret N; Loridon K; Ronfort J; Bataillon T
    BMC Evol Biol; 2011 Aug; 11():229. PubMed ID: 21806823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.
    Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ
    Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide association study of inflorescence length of cultivated soybean based on the high-throughout single-nucleotide markers.
    Wang J; Zhao X; Wang W; Qu Y; Teng W; Qiu L; Zheng H; Han Y; Li W
    Mol Genet Genomics; 2019 Jun; 294(3):607-620. PubMed ID: 30739204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-wide association study in quinoa reveals selection pattern typical for crops with a short breeding history.
    Patiranage DSR; Rey E; Emrani N; Wellman G; Schmid K; Schmöckel SM; Tester M; Jung C
    Elife; 2022 Jul; 11():. PubMed ID: 35801689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mining genomic regions associated with agronomic and biochemical traits in quinoa through GWAS.
    Rahman H; Vikram P; Hu Y; Asthana S; Tanaji A; Suryanarayanan P; Quadros C; Mehta L; Shahid M; Gkanogiannis A; Thushar S; Balazadeh S; Mueller-Roeber B; Becerra Lopez-Lavalle LA; Wei T; Singh RK
    Sci Rep; 2024 Apr; 14(1):9205. PubMed ID: 38649738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.
    Burgarella C; Chantret N; Gay L; Prosperi JM; Bonhomme M; Tiffin P; Young ND; Ronfort J
    Mol Ecol; 2016 Jul; 25(14):3397-415. PubMed ID: 27144929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular genetic analysis of spring wheat core collection using genetic diversity, population structure, and linkage disequilibrium.
    Mourad AMI; Belamkar V; Baenziger PS
    BMC Genomics; 2020 Jun; 21(1):434. PubMed ID: 32586286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic variation and association mapping for 12 agronomic traits in indica rice.
    Lu Q; Zhang M; Niu X; Wang S; Xu Q; Feng Y; Wang C; Deng H; Yuan X; Yu H; Wang Y; Wei X
    BMC Genomics; 2015 Dec; 16():1067. PubMed ID: 26673149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Association Study Dissecting the Genetic Architecture Underlying the Branch Angle Trait in Rapeseed (Brassica napus L.).
    Sun C; Wang B; Wang X; Hu K; Li K; Li Z; Li S; Yan L; Guan C; Zhang J; Zhang Z; Chen S; Wen J; Tu J; Shen J; Fu T; Yi B
    Sci Rep; 2016 Sep; 6():33673. PubMed ID: 27646167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.).
    Chao S; Dubcovsky J; Dvorak J; Luo MC; Baenziger SP; Matnyazov R; Clark DR; Talbert LE; Anderson JA; Dreisigacker S; Glover K; Chen J; Campbell K; Bruckner PL; Rudd JC; Haley S; Carver BF; Perry S; Sorrells ME; Akhunov ED
    BMC Genomics; 2010 Dec; 11():727. PubMed ID: 21190581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.