BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 23741616)

  • 1. Decoding the neural mechanisms of human tool use.
    Gallivan JP; McLean DA; Valyear KF; Culham JC
    Elife; 2013 May; 2():e00425. PubMed ID: 23741616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-based information mapping reveals crossmodal vision-action representations in human parietal and occipitotemporal cortex.
    Oosterhof NN; Wiggett AJ; Diedrichsen J; Tipper SP; Downing PE
    J Neurophysiol; 2010 Aug; 104(2):1077-89. PubMed ID: 20538772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representational content of occipitotemporal and parietal tool areas.
    Bracci S; Cavina-Pratesi C; Connolly JD; Ietswaart M
    Neuropsychologia; 2016 Apr; 84():81-8. PubMed ID: 26344476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetition suppression for performed hand gestures revealed by fMRI.
    Hamilton AF; Grafton ST
    Hum Brain Mapp; 2009 Sep; 30(9):2898-906. PubMed ID: 19117276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct representations in occipito-temporal, parietal, and premotor cortex during action perception revealed by fMRI and computational modeling.
    Urgen BA; Pehlivan S; Saygin AP
    Neuropsychologia; 2019 Apr; 127():35-47. PubMed ID: 30772426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural mechanisms of spatial stimulus-response compatibility: the effect of crossed-hand position.
    Matsumoto E; Misaki M; Miyauchi S
    Exp Brain Res; 2004 Sep; 158(1):9-17. PubMed ID: 15029467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.
    Gallivan JP; McLean DA; Flanagan JR; Culham JC
    J Neurosci; 2013 Jan; 33(5):1991-2008. PubMed ID: 23365237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the reaching-grasping network in humans through multivoxel pattern decoding.
    Di Bono MG; Begliomini C; Castiello U; Zorzi M
    Brain Behav; 2015 Nov; 5(11):e00412. PubMed ID: 26664793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mental representations of action: the neural correlates of the verbal and motor components.
    Péran P; Démonet JF; Cherubini A; Carbebat D; Caltagirone C; Sabatini U
    Brain Res; 2010 Apr; 1328():89-103. PubMed ID: 20226773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed neural systems for the generation of visual images.
    Ishai A; Ungerleider LG; Haxby JV
    Neuron; 2000 Dec; 28(3):979-90. PubMed ID: 11163281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Representation of Observed Actions at the Subordinate, Basic, and Superordinate Level.
    Zhuang T; Kabulska Z; Lingnau A
    J Neurosci; 2023 Nov; 43(48):8219-8230. PubMed ID: 37798129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct Functional and Structural Connectivity of the Human Hand-Knob Supported by Intraoperative Findings.
    Simone L; Viganò L; Fornia L; Howells H; Leonetti A; Puglisi G; Bellacicca A; Bello L; Cerri G
    J Neurosci; 2021 May; 41(19):4223-4233. PubMed ID: 33827936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct roles of temporal and frontoparietal cortex in representing actions across vision and language.
    Wurm MF; Caramazza A
    Nat Commun; 2019 Jan; 10(1):289. PubMed ID: 30655531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distributed left hemisphere network active during planning of everyday tool use skills.
    Johnson-Frey SH; Newman-Norlund R; Grafton ST
    Cereb Cortex; 2005 Jun; 15(6):681-95. PubMed ID: 15342430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural mechanisms underlying immediate and final action goals in object use reflected by slow wave brain potentials.
    van Schie HT; Bekkering H
    Brain Res; 2007 May; 1148():183-97. PubMed ID: 17412310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Organization of the Hand Action Observation Network in Individuals Born Without Hands.
    Vannuscorps G; F Wurm M; Striem-Amit E; Caramazza A
    Cereb Cortex; 2019 Jul; 29(8):3434-3444. PubMed ID: 30169751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural substrate of gesture recognition.
    Villarreal M; Fridman EA; Amengual A; Falasco G; Gerschcovich ER; Ulloa ER; Leiguarda RC
    Neuropsychologia; 2008; 46(9):2371-82. PubMed ID: 18433807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Heteromodal Word-Meaning Binding Site in the Visual Word Form Area under Top-Down Frontoparietal Control.
    Qin L; Lyu B; Shu S; Yin Y; Wang X; Ge J; Siok WT; Gao JH
    J Neurosci; 2021 Apr; 41(17):3854-3869. PubMed ID: 33687963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural bases of sentence comprehension: a fMRI examination of syntactic and lexical processing.
    Keller TA; Carpenter PA; Just MA
    Cereb Cortex; 2001 Mar; 11(3):223-37. PubMed ID: 11230094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.