These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23741734)

  • 1. FTIR spectroscopic characterization of differently cultivated food related yeasts.
    Shapaval V; Walczak B; Gognies S; Møretrø T; Suso HP; Wold Åsli A; Belarbi A; Kohler A
    Analyst; 2013 Jul; 138(14):4129-38. PubMed ID: 23741734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi.
    Shapaval V; Møretrø T; Suso HP; Asli AW; Schmitt J; Lillehaug D; Martens H; Böcker U; Kohler A
    J Biophotonics; 2010 Aug; 3(8-9):512-21. PubMed ID: 20414905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds.
    Lecellier A; Gaydou V; Mounier J; Hermet A; Castrec L; Barbier G; Ablain W; Manfait M; Toubas D; Sockalingum GD
    Food Microbiol; 2015 Feb; 45(Pt A):126-34. PubMed ID: 25481069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of culture media for the recovery of airborne yeast in wineries.
    Ocón E; Garijo P; Santamaría P; López R; Olarte C; Gutiérrez AR; Sanz S
    Lett Appl Microbiol; 2013 Sep; 57(3):241-8. PubMed ID: 23682705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints.
    Panagou EZ; Mohareb FR; Argyri AA; Bessant CM; Nychas GJ
    Food Microbiol; 2011 Jun; 28(4):782-90. PubMed ID: 21511139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of survival analysis and Classification and Regression Trees to model the growth/no growth boundary of spoilage yeasts as affected by alcohol, pH, sucrose, sorbate and temperature.
    Evans DG; Everis LK; Betts GD
    Int J Food Microbiol; 2004 Apr; 92(1):55-67. PubMed ID: 15033268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines.
    Cocciardi RA; Ismail AA; Sedman J
    J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of food spoilage fungi by FTIR spectroscopy.
    Shapaval V; Schmitt J; Møretrø T; Suso HP; Skaar I; Åsli AW; Lillehaug D; Kohler A
    J Appl Microbiol; 2013 Mar; 114(3):788-96. PubMed ID: 23210658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-Transform Mid-Infrared Spectroscopy.
    Baldauf NA; Rodriguez-Romo LA; Männig A; Yousef AE; Rodriguez-Saona LE
    J Microbiol Methods; 2007 Jan; 68(1):106-14. PubMed ID: 16905206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel library-independent approach based on high-throughput cultivation in Bioscreen and fingerprinting by FTIR spectroscopy for microbial source tracking in food industry.
    Shapaval V; Møretrø T; Wold Åsli A; Suso HP; Schmitt J; Lillehaug D; Kohler A
    Lett Appl Microbiol; 2017 May; 64(5):335-342. PubMed ID: 27783405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of killer activity in yeasts isolated from the elaboration of seasoned green table olives.
    Hernández A; Martín A; Córdoba MG; Benito MJ; Aranda E; Pérez-Nevado F
    Int J Food Microbiol; 2008 Jan; 121(2):178-88. PubMed ID: 18077043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An inter-laboratory evaluation of selective media for the detection and enumeration of yeasts from blue-veined cheese.
    Viljoen BC; Knox A; Beuchat LR; Deak T; Malfeito-Ferreira M; Hansen TK; Hugo A; Jakobsen M; Loureiro V; Lourens-Hattingh A; Vasdinnyei R
    Int J Food Microbiol; 2004 Jul; 94(1):9-14. PubMed ID: 15172480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of multibounce attenuated total reflectance fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks.
    Khurana HK; Cho IK; Shim JY; Li QX; Jun S
    J Agric Food Chem; 2008 Feb; 56(3):778-83. PubMed ID: 18181572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists.
    Vongsvivut J; Heraud P; Gupta A; Puri M; McNaughton D; Barrow CJ
    Analyst; 2013 Oct; 138(20):6016-31. PubMed ID: 23957051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy.
    Rohman A; Sismindari ; Erwanto Y; Che Man YB
    Meat Sci; 2011 May; 88(1):91-5. PubMed ID: 21227596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of penicillin G salts by infrared spectroscopy: Evaluation of combining orthogonal signal correction with radial basis function-partial least squares regression.
    Talebpour Z; Tavallaie R; Ahmadi SH; Abdollahpour A
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep; 76(5):452-7. PubMed ID: 20472492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-based glucose delivery as a high content screening tool in yeast-based whole-cell biocatalysis.
    Grimm T; Grimm M; Klat R; Neubauer A; Palela M; Neubauer P
    Appl Microbiol Biotechnol; 2012 May; 94(4):931-7. PubMed ID: 22258642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput analysis of the plasmid bioproduction process in Escherichia coli by FTIR spectroscopy.
    Scholz T; Lopes VV; Calado CR
    Biotechnol Bioeng; 2012 Sep; 109(9):2279-85. PubMed ID: 22495516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk.
    Nicolaou N; Xu Y; Goodacre R
    Anal Chem; 2011 Jul; 83(14):5681-7. PubMed ID: 21639098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FT-IR spectroscopy for identification of closely related lactobacilli.
    Oust A; Møretrø T; Kirschner C; Narvhus JA; Kohler A
    J Microbiol Methods; 2004 Nov; 59(2):149-62. PubMed ID: 15369851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.