BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23741856)

  • 1. Detection of heavy metal resistance bioluminescence bacteria using microplate bioassay method.
    Ranjitha P; Karthy ES
    J Environ Sci Eng; 2012 Jan; 54(1):43-9. PubMed ID: 23741856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Correlation between multiple antibiotic resistance and heavy-metal tolerance among some E.coli strains isolated from polluted waters].
    Lazăr V; Cernat R; Balotescu C; Cotar A; Coipan E; Cojocaru C
    Bacteriol Virusol Parazitol Epidemiol; 2002; 47(3-4):155-60. PubMed ID: 15085605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved detection of toxic chemicals by Photobacterium phosphoreum using modified Boss medium.
    Hassan SH; Oh SE
    J Photochem Photobiol B; 2010 Oct; 101(1):16-21. PubMed ID: 20637650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical speciation and toxicity of metals assessed by three bioluminescence-based assays using marine organisms.
    Deheyn DD; Bencheikh-Latmani R; Latz MI
    Environ Toxicol; 2004 Jun; 19(3):161-78. PubMed ID: 15101032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term preservation of active luminous bacteria by lyophilization.
    Janda I; Opekarová M
    J Biolumin Chemilumin; 1989; 3(1):27-9. PubMed ID: 2652990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability and toxicity of heavy metals in the presence of natural organic matter.
    Kungolos A; Samaras P; Tsiridis V; Petala M; Sakellaropoulos G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1509-17. PubMed ID: 16835107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel and sensitive test for rapid determination of water toxicity.
    Ulitzur S; Lahav T; Ulitzur N
    Environ Toxicol; 2002; 17(3):291-6. PubMed ID: 12112638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescent method for the rapid screening of toxic heayy metals in environmental samples using Photobacterium leiognathi strain AK-MIE.
    Kassim A; Halmi MIE; Gani SSA; Zaidan UH; Othman R; Mahmud K; Shukor MYA
    Ecotoxicol Environ Saf; 2020 Jun; 196():110527. PubMed ID: 32278138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sponge-associated marine bacteria as indicators of heavy metal pollution.
    Selvin J; Shanmugha Priya S; Seghal Kiran G; Thangavelu T; Sapna Bai N
    Microbiol Res; 2009; 164(3):352-63. PubMed ID: 17604613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hormesis response of marine and freshwater luminescent bacteria to metal exposure.
    Shen K; Shen C; Lu Y; Tang X; Zhang C; Chen X; Shi J; Lin Q; Chen Y
    Biol Res; 2009; 42(2):183-7. PubMed ID: 19746263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species.
    Lyzeń R; Wegrzyn G
    Arch Microbiol; 2005 Mar; 183(3):203-8. PubMed ID: 15717160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters.
    Futra D; Heng LY; Surif S; Ahmad A; Ling TL
    Sensors (Basel); 2014 Dec; 14(12):23248-68. PubMed ID: 25490588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria for use in a biosensor.
    Camanzi L; Bolelli L; Maiolini E; Girotti S; Matteuzzi D
    Environ Toxicol Chem; 2011 Apr; 30(4):801-5. PubMed ID: 21191881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LuxCDABE--transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri.
    Kurvet I; Ivask A; Bondarenko O; Sihtmäe M; Kahru A
    Sensors (Basel); 2011; 11(8):7865-78. PubMed ID: 22164050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analogs of the autoinducer of bioluminescence in Vibrio fischeri.
    Eberhard A; Widrig CA; McBath P; Schineller JB
    Arch Microbiol; 1986 Oct; 146(1):35-40. PubMed ID: 3813773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance.
    Yamina B; Tahar B; Marie Laure F
    Water Sci Technol; 2012; 66(10):2041-8. PubMed ID: 22949232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioluminescence as a tool for studying detoxification processes in metal salt solutions involving humic substances.
    Tarasova AS; Kislan SL; Fedorova ES; Kuznetsov AM; Mogilnaya OA; Stom DI; Kudryasheva NS
    J Photochem Photobiol B; 2012 Dec; 117():164-70. PubMed ID: 23123596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence.
    Baldwin TO; Devine JH; Heckel RC; Lin JW; Shadel GS
    J Biolumin Chemilumin; 1989 Jul; 4(1):326-41. PubMed ID: 2801220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of Vibrio fischeri, Photobacterium phosphoreum, and recombinant luminescent using Escherichia coli as BOD measurement.
    Cheng CY; Kuo JT; Lin YC; Liao YR; Chung YC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(2):233-8. PubMed ID: 20390863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioluminescence-mediated stimulation of photoreactivation in bacteria.
    Kozakiewicz J; Gajewska M; Lyzeń R; Czyz A; Wegrzyn G
    FEMS Microbiol Lett; 2005 Sep; 250(1):105-10. PubMed ID: 16040205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.