These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23741856)

  • 21. Isolation of Photobacterium sp. LuB-1 and its application in rapid assays for chemical toxicants in water.
    Hong Y; Chen Z; Zhang B; Zhai Q
    Lett Appl Microbiol; 2010 Sep; 51(3):308-12. PubMed ID: 20666988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid assessment of heavy metal toxicity using bioluminescent bacteria Photobacterium leiognathi strain GoMGm1.
    Muneeswaran T; Kalyanaraman N; Vennila T; Rajesh Kannan M; Ramakritinan CM
    Environ Monit Assess; 2021 Feb; 193(3):109. PubMed ID: 33537887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth and luminescence of luminous bacteria promoted by agents of microbial origin.
    Rodicheva EK; Trubachev IN; Medvedeva SE; Egorova OI; Shitova LYu
    J Biolumin Chemilumin; 1993; 8(6):293-9. PubMed ID: 8285107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide.
    Ranjan R; Rastogi NK; Thakur MS
    J Hazard Mater; 2012 Jul; 225-226():114-23. PubMed ID: 22626628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria].
    Boiandin AN; Kalacheva GS; Rodicheva EK; Volova TG
    Mikrobiologiia; 2008; 77(3):364-9. PubMed ID: 18683654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution and identification of luminous bacteria from the sargasso sea.
    Orndorff SA; Colwell RR
    Appl Environ Microbiol; 1980 May; 39(5):983-7. PubMed ID: 16345575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microplate freeze-dried cyanobacterial bioassay for fresh-waters environmental monitoring.
    Martín-Betancor K; Durand MJ; Thouand G; Leganés F; Fernández-Piñas F; Rodea-Palomares I
    Chemosphere; 2017 Dec; 189():373-381. PubMed ID: 28946071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Investigation of physiological features of luminous bacteria Photobacterium phosphoreum IMV B-7071].
    Gretskiĭ IA
    Mikrobiol Z; 2014; 76(3):42-7. PubMed ID: 25007443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Influence of aflatoxin on Vibrio fischeri luminescence].
    Li X; Pan L; Wang B
    Wei Sheng Wu Xue Bao; 2011 Dec; 51(12):1669-74. PubMed ID: 22379809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectrophotometric detection of labile zinc(II) released from metallothionein: a simple method to evaluate heavy metal toxicity.
    Asano T; Wang PC; Iwasaki A
    J Biosci Bioeng; 2010 Jun; 109(6):638-44. PubMed ID: 20471607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioluminescent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils.
    Alkorta I; Epelde L; Mijangos I; Amezaga I; Garbisu C
    Rev Environ Health; 2006; 21(2):139-52. PubMed ID: 16898676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of genotoxicity of metallic compounds by the bacterial bioluminescence test.
    Ulitzur S; Barak M
    J Biolumin Chemilumin; 1988; 2(2):95-9. PubMed ID: 3213595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Growth and bioluminescence of luminous bacteria under the action of aflatoxin B1 before and after its treatment with nanodiamonds].
    Mogil'naia OA; Puzyr' AP; Bondar' VS
    Prikl Biokhim Mikrobiol; 2010; 46(1):40-4. PubMed ID: 20198915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mixture toxicity of heavy metals on Photobacterium phosphoreum and its modeling by ion characteristics-based QSAR.
    Zeng J; Chen F; Li M; Wu L; Zhang H; Zou X
    PLoS One; 2019; 14(12):e0226541. PubMed ID: 31856252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The evaluation of the total toxicity of heavy metals based on the luminescence bacterial test].
    Khripach LV; Revazova IuA; Khodzhaian AB
    Gig Sanit; 1998; (4):67-72. PubMed ID: 9721511
    [No Abstract]   [Full Text] [Related]  

  • 36. High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles.
    Mortimer M; Kasemets K; Heinlaan M; Kurvet I; Kahru A
    Toxicol In Vitro; 2008 Aug; 22(5):1412-7. PubMed ID: 18400463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of the mannosephilic lectins of Pseudomonas aeruginosa with luminous species of marine enterobacteria.
    Gilboa-Garber N; Mizrahi L
    Microbios; 1979; 26(103):31-6. PubMed ID: 120927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [New biosensors for assessment of environmental toxicity based on marine luminescent bacteria].
    Tsybul'skiĭ IE; Sazykina MA
    Prikl Biokhim Mikrobiol; 2010; 46(5):552-7. PubMed ID: 21061601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast.
    Matyar F
    Bull Environ Contam Toxicol; 2012 Sep; 89(3):551-6. PubMed ID: 22772881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of tritium on luminous marine bacteria and enzyme reactions.
    Selivanova MA; Mogilnaya OA; Badun GA; Vydryakova GA; Kuznetsov AM; Kudryasheva NS
    J Environ Radioact; 2013 Jun; 120():19-25. PubMed ID: 23410594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.