These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23741866)

  • 1. Assessing the economic and environmental feasibility of utility scaled PV electricity production in the state of Georgia.
    Taylor R; Critttenden J
    J Environ Sci Eng; 2012 Jan; 54(1):107-20. PubMed ID: 23741866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.
    Alqahtani BJ; Holt KM; Patiño-Echeverri D; Pratson L
    Environ Sci Technol; 2016 Feb; 50(4):2082-91. PubMed ID: 26745347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Costs of solar and wind power variability for reducing CO2 emissions.
    Lueken C; Cohen GE; Apt J
    Environ Sci Technol; 2012 Sep; 46(17):9761-7. PubMed ID: 22877159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?
    Moore J; Apt J
    Environ Sci Technol; 2013 Mar; 47(6):2487-93. PubMed ID: 23379665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The environmental and economic analysis of grid-connected photovoltaic power systems with silicon solar panels, in accord with the new energy policy in Iran.
    Farangi M; Asl Soleimani E; Zahedifar M; Amiri O; Poursafar J
    Energy (Oxf); 2020 Jul; 202():117771. PubMed ID: 32367905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Techno-economic feasibility study of solar photovoltaic power plant using RETScreen to achieve Indonesia energy transition.
    Paradongan HT; Hakam DF; Wiryono SK; Prahastono I; Aditya IA; Banjarnahor KM; Sinisuka NI; Asekomeh A
    Heliyon; 2024 Apr; 10(7):e27680. PubMed ID: 38586405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle cost analysis of solar energy via environmental externality monetization.
    Huang B; Wang Y; Huang Y; Xu X; Chen X; Duan L; Yu G; Li Z; Liu H; Kua HW; Xue B
    Sci Total Environ; 2023 Jan; 856(Pt 1):158910. PubMed ID: 36152852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marginal cost pricing for coal fired electricity in coastal cities of China: the case of Mawan Electricity Plant in Shenzhen City, China.
    Zhang SQ; Duan YX
    J Environ Sci (China); 2003 May; 15(3):401-12. PubMed ID: 12938994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2012 Sep; 46(18):9838-45. PubMed ID: 22888978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electricity production from anaerobic digestion of household organic waste in Ontario: techno-economic and GHG emission analyses.
    Sanscartier D; Maclean HL; Saville B
    Environ Sci Technol; 2012 Jan; 46(2):1233-42. PubMed ID: 22191423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switch: a planning tool for power systems with large shares of intermittent renewable energy.
    Fripp M
    Environ Sci Technol; 2012 Jun; 46(11):6371-8. PubMed ID: 22506835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue skies over China: The effect of pollution-control on solar power generation and revenues.
    Labordena M; Neubauer D; Folini D; Patt A; Lilliestam J
    PLoS One; 2018; 13(11):e0207028. PubMed ID: 30462670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A methodology for estimating health benefits of electricity generation using renewable technologies.
    Partridge I; Gamkhar S
    Environ Int; 2012 Feb; 39(1):103-10. PubMed ID: 22208748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emissions from photovoltaic life cycles.
    Fthenakis VM; Kim HC; Alsema E
    Environ Sci Technol; 2008 Mar; 42(6):2168-74. PubMed ID: 18409654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The benefits and costs of reducing emissions from the electricity sector.
    Palmer K; Burtraw D; Shih JS
    J Environ Manage; 2007 Apr; 83(1):115-30. PubMed ID: 16716494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. International trade and air pollution: estimating the economic costs of air emissions from waterborne commerce vessels in the United States.
    Gallagher KP
    J Environ Manage; 2005 Oct; 77(2):99-103. PubMed ID: 15992989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method for the technical, financial, economic and environmental pre-feasibility study of geothermal power plants by RETScreen - Ecuador's case study.
    Moya D; Paredes J; Kaparaju P
    MethodsX; 2018; 5():524-531. PubMed ID: 29872640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tradeoffs and Synergies between biofuel production and large solar infrastructure in deserts.
    Ravi S; Lobell DB; Field CB
    Environ Sci Technol; 2014; 48(5):3021-30. PubMed ID: 24467248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the optimal solar photovoltaic (PV) system for Sudan.
    Fadlallah SO; Benhadji Serradj DE
    Sol Energy; 2020 Sep; 208():800-813. PubMed ID: 32863443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations.
    Kerl PY; Zhang W; Moreno-Cruz JB; Nenes A; Realff MJ; Russell AG; Sokol J; Thomas VM
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10884-9. PubMed ID: 26283358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.