These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23742228)

  • 1. Nanoemulsion contrast agents with sub-picomolar sensitivity for xenon NMR.
    Stevens TK; Ramirez RM; Pines A
    J Am Chem Soc; 2013 Jul; 135(26):9576-9. PubMed ID: 23742228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band-selective chemical exchange saturation transfer imaging with hyperpolarized xenon-based molecular sensors.
    Meldrum T; Bajaj VS; Wemmer DE; Pines A
    J Magn Reson; 2011 Dec; 213(1):14-21. PubMed ID: 21974996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-compartment radial diffusive exchange analysis of the NMR lineshape of (129)Xe dissolved in a perfluorooctyl bromide emulsion.
    Gherase MR; Wallace JC; Cross AR; Santyr GE
    J Chem Phys; 2006 Jul; 125(4):44906. PubMed ID: 16942191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilizing a water-soluble cryptophane with fast xenon exchange rates for picomolar sensitivity NMR measurements.
    Bai Y; Hill PA; Dmochowski IJ
    Anal Chem; 2012 Nov; 84(22):9935-41. PubMed ID: 23106513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast gradient-encoded CEST spectroscopy of hyperpolarized xenon.
    Döpfert J; Witte C; Schröder L
    Chemphyschem; 2014 Feb; 15(2):261-4. PubMed ID: 24408772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfluorocarbon emulsions as intravenous delivery media for hyperpolarized xenon.
    Wolber J; Rowland IJ; Leach MO; Bifone A
    Magn Reson Med; 1999 Mar; 41(3):442-9. PubMed ID: 10204864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): sensing xenon-host exchange dynamics and binding affinities by NMR.
    Kunth M; Witte C; Schröder L
    J Chem Phys; 2014 Nov; 141(19):194202. PubMed ID: 25416884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Expanded Palette of Xenon-129 NMR Biosensors.
    Wang Y; Dmochowski IJ
    Acc Chem Res; 2016 Oct; 49(10):2179-2187. PubMed ID: 27643815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Nanostructures Produce Self-Adjusting Hyperpolarized Magnetic Resonance Imaging Contrast through Physical Gas Partitioning.
    Kunth M; Lu GJ; Witte C; Shapiro MG; Schröder L
    ACS Nano; 2018 Nov; 12(11):10939-10948. PubMed ID: 30204404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-Based Contrast Agents for
    Jayapaul J; Schröder L
    Contrast Media Mol Imaging; 2019; 2019():9498173. PubMed ID: 31819739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.
    Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E
    Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MRI thermometry based on encapsulated hyperpolarized xenon.
    Schilling F; Schröder L; Palaniappan KK; Zapf S; Wemmer DE; Pines A
    Chemphyschem; 2010 Nov; 11(16):3529-33. PubMed ID: 20821795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cucurbit[6]uril is an ultrasensitive (129)Xe NMR contrast agent.
    Wang Y; Dmochowski IJ
    Chem Commun (Camb); 2015 May; 51(43):8982-5. PubMed ID: 25929681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion.
    Ostertag F; Weiss J; McClements DJ
    J Colloid Interface Sci; 2012 Dec; 388(1):95-102. PubMed ID: 22981587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification.
    Saberi AH; Fang Y; McClements DJ
    J Colloid Interface Sci; 2013 Feb; 391():95-102. PubMed ID: 23116862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity enhancement of (Hyper-)CEST image series by exploiting redundancies in the spectral domain.
    Döpfert J; Witte C; Kunth M; Schröder L
    Contrast Media Mol Imaging; 2014; 9(1):100-7. PubMed ID: 24470299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH and counterions on the encapsulation properties of xenon in water-soluble cryptophanes.
    Berthault P; Desvaux H; Wendlinger T; Gyejacquot M; Stopin A; Brotin T; Dutasta JP; Boulard Y
    Chemistry; 2010 Nov; 16(43):12941-6. PubMed ID: 20886471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor.
    Schröder L; Lowery TJ; Hilty C; Wemmer DE; Pines A
    Science; 2006 Oct; 314(5798):446-9. PubMed ID: 17053143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR.
    Witte C; Kunth M; Rossella F; Schröder L
    J Chem Phys; 2014 Feb; 140(8):084203. PubMed ID: 24588160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.
    Klippel S; Döpfert J; Jayapaul J; Kunth M; Rossella F; Schnurr M; Witte C; Freund C; Schröder L
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):493-6. PubMed ID: 24307424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.